光学学报, 2017, 37 (2): 0214001, 网络出版: 2017-02-13   

Ti6Al4V合金毫秒激光打孔重铸层的形成机制 下载: 512次

Formation Mechanism of Recast Layer in Millisecond Laser Drilling of Ti6Al4V Alloys
作者单位
1 南京理工大学理学院, 江苏 南京 210094
2 周口师范学院机械与电气工程学院, 河南 周口 466001
引用该论文

张廷忠, 张冲, 李晋, 张宏超, 陆健. Ti6Al4V合金毫秒激光打孔重铸层的形成机制[J]. 光学学报, 2017, 37(2): 0214001.

Zhang Tingzhong, Zhang Chong, Li Jin, Zhang Hongchao, Lu Jian. Formation Mechanism of Recast Layer in Millisecond Laser Drilling of Ti6Al4V Alloys[J]. Acta Optica Sinica, 2017, 37(2): 0214001.

参考文献

[1] 徐至展, 李弘毅, 徐毓光, 等. 强激光束在等离子体中的自聚焦[J]. 中国科学, 1983, (1): 52-56.

[2] 赵士强, 李 凌. 飞秒脉冲激光烧蚀金膜的相变传热研究[J]. 光学学报, 2015, 35(12): 1214001.

    Zhao Shiqiang, Li Ling. Numerical investigation of phase change during thermal ablation of gold films induced by femtosecond laser[J]. Acta Optica Sinica, 2015, 35(12): 1214001.

[3] Leigh S, Sezer K, Li L, et al. Statistical analysis of recast formation in laser drilled acute blind holes in CMSX-4 nickel superalloy[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(11-12): 1094-1105.

[4] Zhang T Z, Jia Z C, Cui H C, et al. Analysis of melt ejection during long pulsed laser drilling[J]. Chinese Physics B, 2016, 25(5): 054206.

[5] Voisey K T, Klocker T, Clyne T W. Measurement of melt ejection velocities during laser drilling of steel, using a novel droplet stream interception technique[J]. Acta Materialia, 2002, 50(17): 4219-4230.

[6] Low D K Y, Li L, Byrd P J. Spatter prevention during the laser drilling of selected aerospace materials[J]. Journal of Materials Processing Technology, 2003, 139(1-3): 71-76.

[7] Duan W Q, Wang K D, Dong X, et al. Experimental characterizations of burr deposition in Nd∶YAG laser drilling: A parametric study[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1529-1542.

[8] Yilbas B S, Karatas C, Uslan, et al. CO2 laser gas assisted nitriding of Ti-6Al-4V alloy[J]. Applied Surface Science, 2006, 252(24): 8557-8564.

[9] Yilbas B S, Sami M. Liquid ejection and possible nucleate boiling mechanisms in relation to the laser drilling process[J]. Journal of Physics D-Applied Physics, 1997, 30(14): 1996-2005.

[10] Yang C J, Mei X S, Wang W J, et al. Recast layer removal using ultrafast laser in titanium alloy[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2321-2327.

[11] Duan W Q, Dong X, Wang K D, et al. Effect of temporally modulated pulse on reducing recast layer in laser drilling[J]. The International Journal of Advacned Manufacturing Technology, 2016, 87(5): 1641-1652.

[12] Bandyopadhyay S, Gokhale H, Sundar J K S, et al. A statistical approach to determine process parameter impact in Nd∶YAG laser drilling of IN718 and Ti-6Al-4V sheets[J]. Optics and Lasers in Engineering, 2005, 43(2): 163-182.

[13] 宋林森, 史国权, 李占国. 利用ANSYS进行激光打孔温度场仿真[J]. 兵工学报, 2006, 27(5): 879-882.

    Song Linsen, Shi Guoquan, Li Zhanguo. Simulation of laser drilling temperature field by using ANSYS[J]. Acta Armamentarii, 2006, 27(5): 879-882.

[14] 褚庆臣, 虞 钢, 卢国权, 等. 激光打孔工艺参数对孔型影响的二维数值模拟研究[J]. 中国激光, 2011, 38(6): 0603001.

    Chu Qingchen, Yu Gang, Lu Guoquan, et al. Two-dimensional numerical investigation for the effects of laser process parameters on hole type during laser drilling[J]. Chinese J Lasers, 2011, 38(6): 0603001.

[15] Zhang Y W, Faghri A. Vaporization, melting and heat conduction in the laser drilling process[J]. International Journal of Heat and Mass Transfer, 1999, 42(10): 1775-1790.

[16] Hirano K, Fabbro R. Experimental investigation of hydrodynamics of melt layer during laser cutting of steel[J]. Journal of Physics D-Applied Physics, 2011, 44(10): 105502.

[17] Ki H, Mohanty P S, Mazumder J. Modelling of high-density laser-material interaction using fast level set method[J]. Journal of Physics D-Applied Physics, 2001, 34(3): 364-372.

[18] Otto A, Koch H, Leitz K H, et al. Numerical simulations-A versatile approach for better understanding dynamics in laser material processing[C]. Physics Procedia, 2011, 12: 11-20.

[19] Pang S Y, Chen X, Zhou J X, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47-58.

[20] Pang S Y, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007.

[21] Fabbro R, Hirano K, Pang S Y. Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure[J]. Journal of Laser Applications, 2016, 28(2): 022427.

[22] Courtois M, Carin M, Masson P L, et al. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding[J]. Journal of Physics D-Applied Physics, 2013, 46(50): 505305.

[23] Riveiro A, Quintero F, Lusquios F, et al. Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting[J]. Journal of Physics D-Applied Physics, 2011, 44(13): 135501.

[24] Wei P S, Wu J H, Chao T C, et al. Keyhole collapse during high intensity beam drilling[J]. International Journal of Heat and Mass Transfer, 2014, 79: 300-308.

[25] Bandyopadhyay S, Sundar J K S, Sundararajan G, et al. Geometrical features and metallurgical characteristics of Nd∶YAG laser drilled holes in thick IN718 and Ti-6Al-4V sheets[J]. Journal of Materials Processing Technology, 2002, 127(1): 83-95.

张廷忠, 张冲, 李晋, 张宏超, 陆健. Ti6Al4V合金毫秒激光打孔重铸层的形成机制[J]. 光学学报, 2017, 37(2): 0214001. Zhang Tingzhong, Zhang Chong, Li Jin, Zhang Hongchao, Lu Jian. Formation Mechanism of Recast Layer in Millisecond Laser Drilling of Ti6Al4V Alloys[J]. Acta Optica Sinica, 2017, 37(2): 0214001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!