光学学报, 2017, 37 (2): 0214001, 网络出版: 2017-02-13   

Ti6Al4V合金毫秒激光打孔重铸层的形成机制 下载: 512次

Formation Mechanism of Recast Layer in Millisecond Laser Drilling of Ti6Al4V Alloys
作者单位
1 南京理工大学理学院, 江苏 南京 210094
2 周口师范学院机械与电气工程学院, 河南 周口 466001
摘要
Ti6Al4V合金在毫秒激光打孔过程中,沿孔壁会形成严重影响成品性能的重铸层。考虑熔体受到的热学和力学等方面的影响,基于修改的流体力学方程和改进的水平集法,建立了激光打孔的固/液/气三相二维数值计算模型,在单脉冲能量为3 J的条件下,对不同脉宽参数的激光打孔进行数值研究。运用后处理技术提取了打孔过程中重铸层的温度场、流场和厚度分布情况。结果表明,蒸发和喷溅是熔体排除的主要方式,重铸层是在热-力耦合作用下形成的。重铸层的厚度随激光脉宽的增大而增加,并呈现从孔口到孔底逐渐变薄的特征。
Abstract
During the process of millisecond laser drilling of Ti6Al4V alloys, the recast layer forms along hole walls, which is a serious detriment to hole quality. In consideration of the thermal and mechanical parameters influencing melt and based on the modified equations of fluid mechanics and improved Level-Set method, a solid/liquid/gas three-phase two dimensional numerical model is constructed used for laser drilling. The numerical investigation of laser drilling with different pulse widths and with single pulse energy of 3 J is conducted. The temperature field, flow field, and thickness distribution of recast layer during the drilling process are obtained by using the post-processing technology. The results indicate that molten liquid is discharged mainly by means of evaporation and ejection and the recast layer is formed under the coupling effect of heat and force. The recast layer thickness increases with the increment of laser pulse width, which possesses a characteristic of recast layer becoming thin slowly from top hole to bottom hole.
参考文献

[1] 徐至展, 李弘毅, 徐毓光, 等. 强激光束在等离子体中的自聚焦[J]. 中国科学, 1983, (1): 52-56.

[2] 赵士强, 李 凌. 飞秒脉冲激光烧蚀金膜的相变传热研究[J]. 光学学报, 2015, 35(12): 1214001.

    Zhao Shiqiang, Li Ling. Numerical investigation of phase change during thermal ablation of gold films induced by femtosecond laser[J]. Acta Optica Sinica, 2015, 35(12): 1214001.

[3] Leigh S, Sezer K, Li L, et al. Statistical analysis of recast formation in laser drilled acute blind holes in CMSX-4 nickel superalloy[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(11-12): 1094-1105.

[4] Zhang T Z, Jia Z C, Cui H C, et al. Analysis of melt ejection during long pulsed laser drilling[J]. Chinese Physics B, 2016, 25(5): 054206.

[5] Voisey K T, Klocker T, Clyne T W. Measurement of melt ejection velocities during laser drilling of steel, using a novel droplet stream interception technique[J]. Acta Materialia, 2002, 50(17): 4219-4230.

[6] Low D K Y, Li L, Byrd P J. Spatter prevention during the laser drilling of selected aerospace materials[J]. Journal of Materials Processing Technology, 2003, 139(1-3): 71-76.

[7] Duan W Q, Wang K D, Dong X, et al. Experimental characterizations of burr deposition in Nd∶YAG laser drilling: A parametric study[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1529-1542.

[8] Yilbas B S, Karatas C, Uslan, et al. CO2 laser gas assisted nitriding of Ti-6Al-4V alloy[J]. Applied Surface Science, 2006, 252(24): 8557-8564.

[9] Yilbas B S, Sami M. Liquid ejection and possible nucleate boiling mechanisms in relation to the laser drilling process[J]. Journal of Physics D-Applied Physics, 1997, 30(14): 1996-2005.

[10] Yang C J, Mei X S, Wang W J, et al. Recast layer removal using ultrafast laser in titanium alloy[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9-12): 2321-2327.

[11] Duan W Q, Dong X, Wang K D, et al. Effect of temporally modulated pulse on reducing recast layer in laser drilling[J]. The International Journal of Advacned Manufacturing Technology, 2016, 87(5): 1641-1652.

[12] Bandyopadhyay S, Gokhale H, Sundar J K S, et al. A statistical approach to determine process parameter impact in Nd∶YAG laser drilling of IN718 and Ti-6Al-4V sheets[J]. Optics and Lasers in Engineering, 2005, 43(2): 163-182.

[13] 宋林森, 史国权, 李占国. 利用ANSYS进行激光打孔温度场仿真[J]. 兵工学报, 2006, 27(5): 879-882.

    Song Linsen, Shi Guoquan, Li Zhanguo. Simulation of laser drilling temperature field by using ANSYS[J]. Acta Armamentarii, 2006, 27(5): 879-882.

[14] 褚庆臣, 虞 钢, 卢国权, 等. 激光打孔工艺参数对孔型影响的二维数值模拟研究[J]. 中国激光, 2011, 38(6): 0603001.

    Chu Qingchen, Yu Gang, Lu Guoquan, et al. Two-dimensional numerical investigation for the effects of laser process parameters on hole type during laser drilling[J]. Chinese J Lasers, 2011, 38(6): 0603001.

[15] Zhang Y W, Faghri A. Vaporization, melting and heat conduction in the laser drilling process[J]. International Journal of Heat and Mass Transfer, 1999, 42(10): 1775-1790.

[16] Hirano K, Fabbro R. Experimental investigation of hydrodynamics of melt layer during laser cutting of steel[J]. Journal of Physics D-Applied Physics, 2011, 44(10): 105502.

[17] Ki H, Mohanty P S, Mazumder J. Modelling of high-density laser-material interaction using fast level set method[J]. Journal of Physics D-Applied Physics, 2001, 34(3): 364-372.

[18] Otto A, Koch H, Leitz K H, et al. Numerical simulations-A versatile approach for better understanding dynamics in laser material processing[C]. Physics Procedia, 2011, 12: 11-20.

[19] Pang S Y, Chen X, Zhou J X, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47-58.

[20] Pang S Y, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007.

[21] Fabbro R, Hirano K, Pang S Y. Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure[J]. Journal of Laser Applications, 2016, 28(2): 022427.

[22] Courtois M, Carin M, Masson P L, et al. A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding[J]. Journal of Physics D-Applied Physics, 2013, 46(50): 505305.

[23] Riveiro A, Quintero F, Lusquios F, et al. Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting[J]. Journal of Physics D-Applied Physics, 2011, 44(13): 135501.

[24] Wei P S, Wu J H, Chao T C, et al. Keyhole collapse during high intensity beam drilling[J]. International Journal of Heat and Mass Transfer, 2014, 79: 300-308.

[25] Bandyopadhyay S, Sundar J K S, Sundararajan G, et al. Geometrical features and metallurgical characteristics of Nd∶YAG laser drilled holes in thick IN718 and Ti-6Al-4V sheets[J]. Journal of Materials Processing Technology, 2002, 127(1): 83-95.

张廷忠, 张冲, 李晋, 张宏超, 陆健. Ti6Al4V合金毫秒激光打孔重铸层的形成机制[J]. 光学学报, 2017, 37(2): 0214001. Zhang Tingzhong, Zhang Chong, Li Jin, Zhang Hongchao, Lu Jian. Formation Mechanism of Recast Layer in Millisecond Laser Drilling of Ti6Al4V Alloys[J]. Acta Optica Sinica, 2017, 37(2): 0214001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!