红外, 2018, 39 (3): 36, 网络出版: 2018-04-25  

新型高效双供体型有机染料的设计及理论研究

Design and Theoretical Study of New Type of High Efficiency Dual Donors Type Organic Dyes
邵迪 1,2,*唐炼 2邵长金 2
作者单位
1 中国石油大学(北京)重质油国家重点实验室,北京 102249
2 中国石油大学(北京)理学院,北京 102249
摘要
在实验合成染料WD8的基础上,设计了一系列新型双供体结构的染料ME301-ME306; 并利用密度泛函理论(Density Functional Theory, DFT)和含时密度泛函理论(Time-dependent Density Functional Theory, TDDFT)进一步研究了其物理和电子性质,包括几何结构、IR光谱、吸收光谱和光捕获效率((Light Harvesting Efficiency, LHE)。结果显示,染料ME302中的供体芴基团是更有前途的官能团,特别是染料ME306与染料WD8相比,不仅具有较高的摩尔消光系数以及红移了50 nm, 而且覆盖整个可见光范围,具有较宽的吸收光谱。另外,染料ME306能够将电子有效地注入到TiO2导带中。这种新型双供体结构染料的设计可以为高效染料敏化太阳能电池的研究提供新的策略和指导。
Abstract
On the basis of the experimentally synthesized WD8 dye, a series of new metal-free dual donor type ME301-ME306 dyes were designed. Both Density Functional Theory (DFT) and Time-dependent Density Functional Theory (TDDFT) were used to further investigate their physical and electronic properties including their molecular structures, IR spectra, energy levels and Light Harvesting Efficiency (LHE). The results showed that the double fluorene donors in ME302 were more promising functional groups. In particular, compared with WD8 dye, ME306 not only had its higher molar extinction coefficient and 50 nm red shift, but also covered the entire visible light range and had a broader absorption spectrum. In addition, ME306 could inject electrons into the TiO2 electrode successfully. The design of this double donor dye could provide new strategies and guidance for the research on high efficiency dye-sensitized cells.
参考文献

[1] Grtzel M. Recent Advances in Sensitized Mesoscopic Solar Cells[J]. Accounts of Chemical Research, 2009, 42(11): 1788-1798.

[2] O'regan B, Grtzel M. A Low-cost,High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films[J]. Nature, 1991, 353(6346): 737-740.

[3] 于利成, 李洪飞. 染料敏化太阳能电池研究进展[J]. 材料导报, 2011, 11(2): 7-18.

[4] Yu Q, Wang Y, Yi Z, et al. High-efficiency Dye-sensitized Solar Cells: the Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States[J]. ACS Nano, 2010, 4(10): 6032-6038.

[5] Wen Y, Wu W, Li Y, et al. First Principles Study of Thieno[2,3-b] Indole-based Organic Dyes for Dye-sensitized Solar Cells: Screen Novel π-linkers and Explore the Interface Between Photosensitizers and TiO2[J]. Journal of Power Sources, 2016, 326(15): 193-202.

[6] Chaurasia S, Lin J T. Metal-free Sensitizers for Dye-sensitized Solar Cells[J]. Chemical Record, 2016, 16(3): 1311-1336.

[7] Wang P, Yao Z, Wu H, et al. Dithienopicenocarbazole as the Kernel Module of Low-energy-gap Organic Dyes for Efficient Conversion of Sunlight to Electricit[J]. Energy & Environmental Science, 2015, 8 (11): 3192-3197.

[8] Kakiage K, Aoyama Y, Yano T, et al. Highly-efficient Dye-sensitized Solar Cells with Collaborative Sensitization by Silyl-anchor and Carboxy-anchor Dyes[J]. Chemical Communications, 2015, 51(88): 15894.

[9] Zhong C, Gao J, Cui Y, et al. Coumarin-bearing Triarylamine Sensitizers with High Molar Extinction Coefficient for Dye-sensitized Solar Cells[J]. Journal of Power Sources, 2015, 273(6): 831-838.

[10] Tian H, Yang X, Chen R, et al. Phenothiazine Derivatives for Efficient Organic Dye-sensitized Solar Cells[J]. Chemical Communications, 2007, 36(36): 3741.

[11] Zeng W, Cao Y, Bai Y, et al. Efficient Dye-sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and dithienosilole blocks[J]. Chemistry of Materials, 2010, 22 (5): 1915-1925.

[12] Feng H, Li R, Song Y, et al. Novel D-π-A-π-A Coumarin Dyes for Highly Efficient Dye-sensitized Solar Cells: Effect of π-bridge on Optical, Electrochemical, and Photovoltaic performance[J]. Journal of Power Sources, 2017, 345: 59-66.

[13] Iqbal Z, Wu W Q. Trilateral π-conjugation Extensions of Phenothiazine-based Dyes Enhance the Photovoltaic Performance of the Dye-sensitized Solar Cells[J]. Dyes & Pigments, 2016, 124(124): 63-71.

[14] Cai N, Moon S J, Cevey-Ha L, et al. An Organic D-π-A Dye for Record Efficiency Solid-state Sensitized Heterojunction Solar Cells[J]. Nano Letters, 2011, 11(4): 1452.

[15] Yang J B, Ganesan P, Teuscher J, et al. Influence of the Donor Size in D-pi-A Organic Dyes for Dye-sensitized Solar Cells[J]. Journal of the American Chemical Society, 2014, 136(15): 5722-5730.

[16] Wang S, Wang H R, Guo J C, et al. Influence of the Terminal Electron Donor in D-D-π-A Phenothiazine Dyes for Dye-sensitized Solar Cells[J]. Dyes & Pigments, 2014, 109: 96-104.

[17] Liu X, Cao Z, Huang H, et al. Novel D-D-π-A Organic Dyes Based on Triphenylamine and Indole-derivatives for High Performance Dye-sensitized Solar Cells[J]. Journal of Power Sources, 2014, 248(15): 400-406.

[18] Ning Z, Zhang Q, Wu W, et al. Starburst Triarylamine Based Dyes for Efficient Dye-sensitized Solar Cells[J]. Journal of Organic Chemistry, 2008, 73(10): 3791.

[19] Chai Q, Li W, Zhu S, et al. Influence of Donor Configurations on Photophysical, Electrochemical, and Photovoltaic Performances in D-π-A Organic Sensitizers[J]. Acs Sustainable Chemistry & Engineering, 2014, 2(2): 239-247.

[20] Yuan R, Liu Z, Wan Y, et al. New D-D-p-A-type Indol-triarylamine Sensitizers for Ef cient Dye-sensitized Solar Cells[J]. Synthetic Metals, 2016, 215(215): 21-27.

[21] He J, Liu Y, Gao J, et al. New D-D-π-A Triphenylamine-coumarin Sensitizers for Dye-sensitized Solar Cells[J]. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association & the European Society for Photobiology, 2017, 16(7): 1049-1056.

[22] Dai P, Yang L, Liang M, et al. Influence of the Terminal Electron Donor in D-D-π-A Organic Dye-sensitized Solar Cells: Dithieno[3,2-b:2,3-d]pyrrole Versus Bis(amine)[J]. Acs Applied Materials & Interfaces, 2015, 7(40): 22436-22447.

[23] Frisch M. et al. DJ Fox. Gaussian 09[CP]. Revision C. 01. Gaussian, Inc.: Wallingford, CT, 2009.

[24] Becke A D. Density‐functional thermochemistry. III. The role of exact exchange[J]. The Journal of Chemical Physics, 98(1993): 5648-5652.

[25] Zhang M, Wang Y, Xu M, et al. Design of High-efficiency Organic Dyes for Titania Solar Cells Based on the Chromophoric Core of Cyclopentadithiophene-benzothiadiazole[J]. Energy & Environmental Science, 2013, 6(10): 2944-2949.

[26] Chattopadhyay D, Lastella S, Kim S, et al. Length Separation of Zwitterion-functionalized Single Wall Carbon Nanotubes by GPC[J]. Journal of the American Chemical Society, 2002, 124(5): 728-729.

[27] Yanai T, Tew D P, Handy N C. A New Hybrid Exchange-correlation Functional Using the Coulomb-attenuating Method (CAM-B3LYP)[J]. Chemical Physics Letters, 2004, 393(1-3): 51-57.

[28] Chaitanya K, Ju X -H, Heron B M. Can Elongation of the p-system in Triarylamine Derived Sensitizers with Either Benzothiadiazole and/or Ortho-fluorophenyl Moieties Enrich Their Light Harvesting Efficiency -a theoretical Study[J]. Rsc Advances, 2014, 5(6): 3978-3998.

[29] Delley B. An All Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules[J]. Journal of Chemical Physics, 1990, 92(1): 508-517.

[30] Perdew J, Burke K, Ernzerh M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters, 1997, 78(18).

邵迪, 唐炼, 邵长金. 新型高效双供体型有机染料的设计及理论研究[J]. 红外, 2018, 39(3): 36. SHAO Di, TANG Lian, SHAO Chang-Jin. Design and Theoretical Study of New Type of High Efficiency Dual Donors Type Organic Dyes[J]. INFRARED, 2018, 39(3): 36.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!