光学学报, 2018, 38 (11): 1101002, 网络出版: 2019-05-09  

四进制自由空间激光通信信号的支持向量机检测算法 下载: 792次

Detection Algorithm of Support Vector Machine for Four-Level Free-Space Laser Communication Signals
作者单位
浙江大学现代光学仪器国家重点实验室光及电磁波研究中心, 浙江 杭州 310058
引用该论文

何宏炜, 吴志航, 于召新, 冯湘莲, 江荷馨, 高士明. 四进制自由空间激光通信信号的支持向量机检测算法[J]. 光学学报, 2018, 38(11): 1101002.

Hongwei He, Zhihang Wu, Zhaoxin Yu, Xianglian Feng, Hexin Jiang, Shiming Gao. Detection Algorithm of Support Vector Machine for Four-Level Free-Space Laser Communication Signals[J]. Acta Optica Sinica, 2018, 38(11): 1101002.

参考文献

[1] Nielsen T, Oppenhäuser G. In-orbit test result of an operational inter-satellite link between ARTEMIS and SPOT-4, SILEX[J]. Proceedings of SPIE, 2002, 4635: 1-15.

[2] Boroson D M, Robinson B S, Burianek D A, et al. Overview and status of the lunar laser communications demonstration[J]. Proceedings of SPIE, 2012, 8246: 82460C.

[3] Sova R M, Sluz J E, Young D W, et al. 80 Gb/s free-space optical communication demonstration between an aerostat and a ground terminal[J]. Proceedings of SPIE, 2006, 6304: 630414.

[4] WangJ, LiuJ, LiS, et al. Experimental demonstration of free-space optical communications using OFDM-QPSK/16QAM-carrying fractional orbital angular momentum (OAM) multiplexing[C]∥Optical Fiber Communication Conference. Washington: Optical Society of America, 2015: M2F. 5.

[5] ZhaoY, LiuJ, DuJ, et al. Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing[C]∥Optical Fiber Communication Conference. Washington: Optical Society of America, 2016: Th1H. 3.

[6] Feng X L, Wu Z H, Wang T S, et al. Experimental demonstration of bidirectional up to 40 Gbit/s QPSK coherent free-space optical communication link over ~1 km[J]. Optics Communications, 2018, 410: 674-679.

[7] Li C Y, Tsai W S. A 150 m/22. 5 Gbaud PAM4-based FSO link[J]. Laser Physics Letters, 2017, 14(6): 065202.

[8] 陈丹, 柯熙政, 张拓, 等. 基于16PSK调制的副载波无线光通信实验研究[J]. 中国激光, 2015, 42(1): 0105005.

    Chen D, Ke X Z, Zhang T, et al. Experimental research on wireless optical communication based on 16PSK subcarrier modulation[J]. Chinese Journal of Lasers, 2015, 42(1): 0105005.

[9] Shang J N, Nan Z Y, Liu S Q, et al. Performance analysis of QPSK in free-space optical communications systems over combined channel with phase compensation error[J]. Optical and Quantum Electronics, 2015, 47(8): 2555-2563.

[10] 马小平, 孙建锋, 职亚楠, 等. DPSK调制/自差动零差相干探测技术克服星地激光通信中大气湍流效应的研究[J]. 光学学报, 2013, 33(7): 0706017.

    Ma X P, Sun J F, Zhi Y N, et al. Research of DPSK modulation and self-differential homodyne coherent detection technology to overcome atmospheric turbulence effect in the satellite-to-ground laser communication[J]. Acta Optica Sinica, 2013, 33(7): 0706017.

[11] ZhengD, LiY, LiB, et al. Free space to few-mode fiber coupling efficiency improvement with adaptive optics under atmospheric turbulence[C]∥Optical Fiber Communication Conference. Washington: Optical Society of America, 2017: Th3C. 2.

[12] Ma J, Li K N, Tan L Y, et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence[J]. Applied Optics, 2015, 54(25): 7575-7585.

[13] Zhu X M, Kahn J M. Free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2002, 50(8): 1293-1300.

[14] Zhu X M, Kahn J M. Markov chain model in maximum-likelihood sequence detection for free-space optical communication through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2003, 51(3): 509-516.

[15] Sebald D J, Bucklew J A. Support vector machine techniques for nonlinear equalization[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3217-3226.

[16] Li M L, Yu S, Yang J, et al. Nonparameter nonlinear phase noise mitigation by using M-ary support vector machine for coherent optical systems[J]. IEEE Photonics Journal, 2013, 5(6): 7800312.

[17] ZhengC, YuS, GuW. A SVM-based processor for free-space optical communication[C]∥2015 5th International Conference on Electronics Information and Emergency Communication (ICEIEC), May 14-16, 2015, Beijing, China. New York: IEEE, 2015: 30- 33.

[18] 吕洁, 朱文越, 青春, 等. 支持向量机估算成都近地面大气光学湍流[J]. 中国激光, 2018, 45(4): 0404001.

    Lü J, Zhu W Y, Qing C, et al. Estimation of atmospheric optical turbulence at near surface of Chengdu with support vector machine[J]. Chinese Journal of Lasers, 2018, 45(4): 0404001.

[19] Yan H X, Li S S, Zhang D L, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Applied Optics, 2000, 39(18): 3023-3031.

[20] Andrews LC, Phillips RL, Hopen CY. Laser beam scintillation with applications[M]. Washington: SPIE Press, 2001.

[21] Andrews LC, Phillips RL. Laser beam propagation through random media[M]. Bellingham, WA: SPIE Press, 2005.

[22] Riediger M LB, SchoberR, LampeL. Blind detection of on-off keying for free-space optical communications[C]∥2008 Canadian Conference on Electrical and Computer Engineering(CCECE), May 4-7, 2008, Niagara Falls, ON, Canada. New York: IEEE, 2008: 001361- 001364.

何宏炜, 吴志航, 于召新, 冯湘莲, 江荷馨, 高士明. 四进制自由空间激光通信信号的支持向量机检测算法[J]. 光学学报, 2018, 38(11): 1101002. Hongwei He, Zhihang Wu, Zhaoxin Yu, Xianglian Feng, Hexin Jiang, Shiming Gao. Detection Algorithm of Support Vector Machine for Four-Level Free-Space Laser Communication Signals[J]. Acta Optica Sinica, 2018, 38(11): 1101002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!