光电工程, 2015, 42 (12): 0035, 网络出版: 2016-01-20   

基于HWG 气体池的TDLAS 氨气测量中影响条件的修正

Correction of Influence Conditions in TDLAS Ammonia Measuring Based on Hollow Waveguide Cell
作者单位
1 天津大学 精密测试技术及仪器国家重点实验室,天津 300072
2 天津职业技术师范大学 机电工程系,天津 300222
摘要
可调谐半导体激光吸收光谱(TDLAS)技术具有很高的选择性和灵敏度,能够实现污染区域环境中痕量氨气(NH3)的在线检测。影响TDLAS 系统测量精度的因素有很多,温度和压力是最基本的两个影响条件。首先介绍了TDLAS 原理和实验系统,然后研究了温度变化对检测结果的影响,温度在-10℃~50℃之间,使用空芯波导(Hollow Waveguide, HWG)气体池对浓度为50 ppm 的NH3 进行检测,得到其二次谐波光谱图,从图中可以得出在该温度范围内,NH3 二次谐波信号幅度随温度升高而减小。温度不变,气体池内压力从0 kPa 变化到100 kPa 时,二次谐波信号的幅度随着压力增加而减小。根据实验结果,给出了该系统的温度压力修正公式。修正后,50 ppm 的NH3在不同温度下的最大检测相对误差为-5.5%。对30 ppm 的NH3 长时间监测结果表明,修正后系统能够适应现场监测需求。
Abstract
Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology, with the advantages of high selectivity and high accuracy, provides a reliable technology means for ammonia (NH3) on-line detection of the environment. There are many factors affecting the measurement accuracy of TDLAS system. Among them, temperature and pressure are the two basic influence conditions. First, the present paper introduces the effects of temperature change on NH3 concentration detection. Between -10 ℃ ~ 50 ℃,using Hollow Waveguide (HWG) cell to detect the NH3 of 50 ppm, the second harmonic spectra were obtained, which show that the amplitude of the second harmonic signal will decrease with increasing temperature. When the pressure changes from 0 kPa to 100 kPa, the amplitude of the second harmonic signal will decrease with the increasing of the pressure. According to the above results, the experience formula of temperature and pressure correction was raised. The maximum relative error of the 50 ppm concentration NH3 after temperature correction is -5.5% at different temperature condition. The long time monitoring results show that the system could adapt to on-line monitoring after correction.
参考文献

[1] 包景岭,李伟芳,邹克华. 浅议恶臭污染的健康风险研究[J]. 城市环境与城市生态,2012,25(4):5-7.

    BAO Jingling,LI Weifang,ZOU Kehua. Research Status of Health Risk of Odor Pollution[J]. Urban Environment and Urban Ecology,2012,25(4):5-7.

[2] 邹得宝,陈文亮,杜振辉,等. 数字滤波方法在TDLAS 逃逸氨检测中的选用[J]. 光谱学与光谱分析,2012,32(9): 2322-2326.

    ZOU Debao,CHEN Wenliang,DU Zhenhui,et al. Selection of Digital Filtering in the Escaping Ammonia Monitoring with TDALS[J]. Spectroscopy and Spectral Analysis,2012,32(9):2322-2326.

[3] SUTTON M A,DRAGOSITS U,DORE A J,et al. The Potential of NH3, N2O and CH4 Measurements Following the 2001 Outbreak of Foot and Mouth Disease in Great Britain to Reduce the Uncertainties in Agricultural Emissions Abatement[J]. Environmental Science & Policy(S1462-9011),2004,7(3):173-194.

[4] von Edlinger M,Scheuermann J,N hle L,et al. Distributed Feedback Interband Cascade Lasers and Their Spectroscopic Applications in Gas Sensing [C]// Laser Applications to Chemical, Security and Environmental Analysis,Seattle,USA, July 13-17,2014:LTu3D.4.

[5] WERLE P,SLEMR F,MAURER K,et al. Near-and Mid-Infrared Laser-Optical Sensors for Gas Analysis[J]. Optics and Lasers in Engineering(S0143-8166),2002,37(2):101-114.

[6] LI Jinyi,DU Zhenhui,MA Yiwen,et al. Dynamic Thermal Modeling and Parameter Identification for a Monolithic Laser Diode Module[J]. Chinese Physics B(S1674-1056),2013,22(3):034203.

[7] REID J,LABRIE D. Second-Harmonic Detection with Tunable Diode Lasers—Comparison of Experiment and Theory[J]. Applied Physics B(S0946-2171),1981,26(3):203-210.

[8] 张增福,邹得宝,陈文亮,等. 基于可调谐半导体激光吸收光谱技术的逃逸氨在线监测研究[J]. 光学技术,2013,39(4): 297-299.

    ZHANG Zengfu,ZOU Debao,CHEN Wenliang,et al. Study of On-line Monitoring in the Escaping Ammonia with Tunable Diode Laser Absorption Spectroscopy[J]. Optical Technique,2013,39(4):297-299.

[9] 陆维佳. 波导吸收池气体传感系统的时间响应特性[D]. 上海:复旦大学,2012:9-18.

    LU Weijia. Time Response Characteristics of Waveguide Absorption Gas Cell of Sensor System[D]. Shanghai: Fudan University,2012:9-18.

[10] 杨杰文. 基于调谐激光吸收光谱技术的气体检测系统研究及优化[D]. 天津:天津大学,2009:40-48.

    YANG Jiewen. Research and Optimization on Gas Detection System Based on Tunable Diode Laser Absorption Spectroscopy[D]. Tianjin: Tianjin University,2009:40-48.

[11] 张增福,邹得宝,陈文亮,等. TDLAS 逃逸氨检测中温度影响的研究[J]. 光电工程,2014,41(6):32-37.

    ZHANG Zengfu,ZOU Debao,CHEN Wenliang,et al. Temperature Influence in the TDLAS Detection of Escaping Ammonia[J]. Opto-Electronic Engineering,2014,41(6):32-37.

[12] 邹得宝. 基于可调谐激光吸收光谱技术测量逃逸氨的关键问题研究[D]. 天津:天津大学,2012:34-48.

    ZOU Debao. Study on Key Problems of Escaping Ammonia Detection Based on Tunable Laser Absorption Spectroscopy Technology[D]. Tianjin: Tianjin University,2012:34-48.

李龙, 杨燕罡, 陈文亮, 杜振辉, 徐可欣. 基于HWG 气体池的TDLAS 氨气测量中影响条件的修正[J]. 光电工程, 2015, 42(12): 0035. LI Long, YANG Yan’gang, CHEN Wenliang, DU Zhenhui, XU Kexin. Correction of Influence Conditions in TDLAS Ammonia Measuring Based on Hollow Waveguide Cell[J]. Opto-Electronic Engineering, 2015, 42(12): 0035.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!