Photonics Research, 2019, 7 (5): 05000586, Published Online: May. 5, 2019   

Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces Download: 580次

Author Affiliations
1 State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Copy Citation Text

Xin Xie, Mingbo Pu, Xiong Li, Kaipeng Liu, Jinjin Jin, Xiaoliang Ma, Xiangang Luo. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces[J]. Photonics Research, 2019, 7(5): 05000586.

References

[1] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 2014, 13: 139-150.

[2] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 2014, 8: 889-898.

[3] LuoX.TsaiD.GuM.HongM., “Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion,” Chem. Soc. Rev. (2019), DOI: 10.1039/c8cs00864g.

[4] X. Luo. Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photon., 2018, 5: 4724-4738.

[5] X. Luo, D. Tsai, M. Gu, M. Hong. Subwavelength interference of light on structured surfaces. Adv. Opt. Photon., 2018, 10: 757-842.

[6] X. Luo. Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater., 2018, 31: 1804680.

[7] M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv., 2015, 1: e1500396.

[8] J. Zeng, L. Li, X. Yang, J. Gao. Generating and separating twisted light by gradient-rotation split-ring antenna metasurfaces. Nano Lett., 2016, 16: 3101-3108.

[9] N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, H.-T. Chen. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340: 1304-1307.

[10] M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett., 2013, 102: 131906.

[11] X. Ma, M. Pu, X. Li, Y. Guo, X. Luo. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron. Adv., 2019, 2: 180023.

[12] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352: 1190-1194.

[13] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan. Broadband achromatic optical metasurface devices. Nat. Commun., 2017, 8: 187.

[14] D. Lin, P. Fan, E. Hasman, M. L. Brongersma. Dielectric gradient metasurface optical elements. Science, 2014, 345: 298-302.

[15] Y. Wang, X. Ma, X. Li, M. Pu, X. Luo. Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv., 2018, 1: 180013.

[16] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 2013, 4: 2807.

[17] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 2015, 10: 308-312.

[18] X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, X. Luo. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2016, 2: e1601102.

[19] D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu. Terahertz broadband low-reflection metasurface by controlling phase distributions. Adv. Opt. Mater., 2015, 3: 1405-1410.

[20] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Sci. Appl., 2014, 3: e218.

[21] M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep., 2015, 5: 9822.

[22] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, X. Zhang. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349: 1310-1314.

[23] Y. Yang, L. Jing, B. Zheng, R. Hao, W. Yin, E. Li, C. M. Soukoulis, H. Chen. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater., 2016, 28: 6866-6871.

[24] X. Xie, M. Pu, Y. Huang, X. Ma, X. Li, Y. Guo, X. Luo. Heat resisting metallic meta-skin for simultaneous microwave broadband scattering and infrared invisibility based on catenary optical field. Adv. Mater. Technol., 2018, 4: 1800612.

[25] J. Yang, C. Huang, X. Wu, B. Sun, X. Luo. Dual-wavelength carpet cloak using ultrathin metasurface. Adv. Opt. Mater., 2018, 6: 1800073.

[26] X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater., 2018, 28: 1706673.

[27] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337.

[28] X. Luo. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mechan. Astron., 2015, 58: 594201.

[29] S. Pancharatnam. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. A, 1956, 44: 247-262.

[30] M. V. Berry. The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt., 1987, 34: 1401-1407.

[31] S. Simms, V. Fusco. Chessboard reflector for RCS reduction. Electron. Lett., 2008, 44: 316-318.

[32] PalikE. D., Handbook of Optical Constants of Solids (Academic, 1985).

[33] M. Pu, Y. Guo, X. Li, X. Ma, X. Luo. Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photon., 2018, 5: 3198-3204.

[34] M. Pu, X. Ma, Y. Guo, X. Li, X. Luo. Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express, 2018, 26: 19555-19562.

[35] J. C. I. Galarregui, A. T. Pereda, J. L. M. De Falcon, I. Ederra, R. Gonzalo, P. de Maagt. Broadband radar cross-section reduction using AMC technology. IEEE Trans. Antennas Propag., 2013, 61: 6136-6143.

[36] A. Nemati, Q. Wang, M. Hong, J. Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 2018, 1: 180009.

Xin Xie, Mingbo Pu, Xiong Li, Kaipeng Liu, Jinjin Jin, Xiaoliang Ma, Xiangang Luo. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces[J]. Photonics Research, 2019, 7(5): 05000586.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!