Photonics Research, 2019, 7 (5): 05000586, Published Online: May. 5, 2019   

Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces Download: 580次

Author Affiliations
1 State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
2 School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Figures & Tables

Fig. 1. Schematic of the scattering engineered metasurface with a chessboard-like configuration; λ1 and λ2 denote the incoming wavelengths from two infrared bands. Inset illustrates the super cell of the metasurface.

下载图片 查看原文

Fig. 2. Numerically calculated results of the (a)–(g) dual-band and (h)–(m) ultra-broadband unit cells. (a) Schematic view of a periodic α-Si ridge array on a gold mirror. (b) Reflection phase for the unit cells under x- (TM) and y- (TE) polarized incidences, as well as the relative phase difference between x and y polarizations. (c) Cross-polarization and co-polarization reflectances under circularly polarized illumination at near-infrared and far-infrared spectra. (d), (e) Calculated (d) electric field distributions and (e) phase profiles for TE- and TM-polarized illuminations at 1.06 μm. (f), (g) Calculated (f) electric field distributions and (g) phase profiles for TE- and TM-polarized illuminations at 10.6 μm. (h) Ultra-broadband cross-polarization and co-polarization reflectances under circularly polarized illumination. (i), (j) Calculated (i) reflectance and (j) phase for TE and TM illuminations. (k) Phase difference between the two orthogonal polarizations. (l) Phase distributions for TM illumination at 49 THz and 50 THz. (m) Magnetic field profiles for TM illumination at 49 THz and 50 THz.

下载图片 查看原文

Fig. 3. Full-wave simulations for the (a)–(f) dual-band and (g)–(k) ultra-broadband metasurfaces for x-polarized normal incidences. (a), (b) 3D scattering patterns of the dual-band metasurface at 1.06 μm and 10.6 μm, respectively. (c), (d) Scattering patterns of the dual-band metasurface on φ=45° plane at 1.06 μm and 10.6 μm, respectively. (e), (f) Calculated specular reflectance spectra of the dual-band metasurface and an Au plate. (g), (h) 3D scattering patterns of the ultra-broadband metasurface at 5 μm and 12 μm, respectively. (i), (j) Scattering patterns of the ultra-broadband metasurface on φ=45° plane at 5 μm and 12 μm, respectively. (k) Calculated specular reflectance spectra of the ultra-broadband metasurface and an Au plate.

下载图片 查看原文

Fig. 4. Sample fabrication and measurements. (a) Schematic of the fabrication process. (b) SEM image of part of the fabricated metasurface. Scale bar: 50 μm. (c) Measured reflectance spectra of the fabricated sample and Au plate under oblique incidences. (d) Measured thermal infrared images of a ceramic doll, a gold plate, and the fabricated sample. The white dotted frame marks the fabricated area.

下载图片 查看原文

Fig. 5. Simulated electric field magnitude distributions Ex in the gap between two α-Si ridges under x-polarized illumination and the catenary curves fitting at the wavelength of (a) 1.06 μm and (b) 10.6 μm, respectively.

下载图片 查看原文

Fig. 6. Full-wave simulated specular reflectance spectra of the metasurface under oblique incidences of (a) 15°, (b) 20°, and (c) 30°, respectively.

下载图片 查看原文

Fig. 7. Calculated absorption spectra of a gold plate with and without the α-Si ridge array under TE and TM illuminations with different incidence angles.

下载图片 查看原文

Xin Xie, Mingbo Pu, Xiong Li, Kaipeng Liu, Jinjin Jin, Xiaoliang Ma, Xiangang Luo. Dual-band and ultra-broadband photonic spin-orbit interaction for electromagnetic shaping based on single-layer silicon metasurfaces[J]. Photonics Research, 2019, 7(5): 05000586.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!