光学 精密工程, 2019, 27 (5): 1060, 网络出版: 2019-09-02  

长时间运转100 Hz放电引发非链式HF激光器

Hundred-Hertz nonchain HF laser with long operation period based on initiated discharge
作者单位
西北核技术研究所 激光与物质相互作用国家重点实验室, 陕西 西安 710024
摘要
为了获得稳定的、大能量重频中红外HF激光输出, 基于紧凑型、闭环放电引发非链式HF中红外化学激光器, 从能量影响因素、解决措施和实验验证三个方面系统性地研究了100 Hz重频HF激光的能量稳定性。首先结合非链式HF化学激光动力学过程和静态重频实验, 分析发现了影响重频放电引发非链式HF化学激光器脉冲能量稳定性的三个主要因素, 包括均匀体放电难以维持、基态HF分子强的消激发效应和工作气体的持续消耗。然后利用工作气体循环流动置换增益区气体, 当增益区气体流速为9 m/s时激光器100 Hz重频运行的放电状态维持良好, 获得100 Hz/ 55 W的激光输出。最后, 采用分子筛吸附分离基态HF分子纯净工作气体以及实时补给工作气体, 提升了重频HF激光器长时间运行的能量稳定性。实验结果表明:100 Hz重频放电引发非链式HF激光器获得了30 s的长时间稳定输出, 激光能量下降率可优于10%。综合工作气体循环流动、分子筛吸附基态HF分子和工作气体实时补给, 放电引发非链式HF激光器实现了高重频长时间的稳定输出。
Abstract
The aim of this investigation was to achieve stable and high-energy repetitive pulsed mid-infrared HF laser operation. A systemic study of pulsed energy stability based on a compact, closed-circle, electric-discharge nonchain HF chemical laser with a repetition frequency of 100 Hz was performed. Initially, the three main factors that influence pulse energy stability in an electric-discharge nonchain HF chemical laser were identified based on chemical reaction kinetics and experimental results without gas flow. In part, the experiments involved the nonmaintenance of uniform volume discharge and the intense de-excitation effect of excited HF molecules via collision deactivation with ground state HF molecules, in addition to the consumption of the working gas. Then, using circular flow, the working gas in the gain region was replaced. Moreover, by maintaining a uniform volume discharge, a 100 Hz repetition-rate HF laser was realized when the gas flow rate in the gain region was 9 m/s. This resulted in an average laser power of approximately 55 W at this repetition rate. Finally, the pulse energy stability of the laser was notably improved when the molecular sieve only absorbed ground-state HF molecule to purify the working gas, which is replenished in real-time. The experimental results show that the pulse energy stability of the HF laser was feasible for operation periods of 30 s, and the average decrease in energy is less than 10%. It is possible to operate for longer periods at a high repetition rate with little loss of the average energy via a combination of recirculation gas flow, selective removal of the ground state HF molecules using a molecular sieve, and by allowing a small replenishment of the working gas.
参考文献

[1] 李殿军,杨贵龙,谢冀江,等.9.3 μm脉冲CO2激光倍频实验[J].光学 精密工程,2009,17(11):2684-2691.

    LI D J, YANG G L, XIE J J, et al.. Experiments of second harmonic generation of 9.3 μm pulsed CO2 lasers[J]. Opt. Precision Eng., 2009, 17(11):2684-2691. (in Chinese)

[2] 余光其,王鹏,宋伟,等.光纤激光泵浦的多波长中红外光参量振荡器[J]. 红外与激光工程, 2018,47(4):0404003.

    YU G Q, WANG P, SONG W, et al.. Fiber laser pumped multi-wavelength mid-infrared optical parametric oscillator[J]. Infrared and Laser Engineering, 2018, 47(4):0404003. (in Chinese)

[3] 苏辉,李志平,段延敏,等.基于掺镁周期极化铌酸锂晶体的内腔单共振连续可调谐光参量振荡器[J].光学 精密工程,2013,21(6):1404-1409.

    SU H, LI ZH P, DUAN Y M, et al.. Intra-cavity singly resonant optical parametric oscillator based on magnesium-doped periodically poled lithium niobate[J]. Opt. Precision Eng., 2013, 21(6):1404-1409. (in Chinese)

[4] 陶蒙蒙,黄珂,吴涛涛,等.Fe∶ZnSe晶体吸收光谱测量及计算[J]. 现代应用物理, 2018, 9(2): 020302.

    TAO M M, HUANG K, WU T T, et al.. Measurement and calculation of the absorption spectrum of Fe∶ZnSe crystal[J]. Modern Applied Physics, 2018, 9(2):020302. (in Chinese)

[5] 吴世松,张合勇,王挺峰,等.基于透射式非稳腔的单纵模TEA CO2激光器[J].光学 精密工程,2018,26(2):293-299.

    WU SH S, ZHANG H Y, WANG T F, et al.. Single longitudinal mode TEA CO2 laser based on transmissive unstable resonator[J]. Opt. Precision Eng., 2018, 26(2):293-299. (in Chinese)

[6] 宋丹丹,左强,武红,等.利用相位啁啾单色中红外激光场产生高次谐波[J].原子与分子物理学报,2018,35(3):466-472.

    SONG D D, ZUO Q, WU H, et al.. High-order harmonic generation with single mid-infrared laser field by a phase-chirping[J]. Journal of Atomic and Molecular Physics, 2018, 35(3):466-472. (in Chinese)

[7] 李充,谢冀江,潘其坤,等.中红外光学参量振荡器技术进展[J].中国光学, 2016,9(6):615-624.

    LI CH, XIE J J, PAN Q K, et al.. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(6):615-624. (in Chinese)

[8] 王杰,郭建增,李少华,等.氟化氢激光长波谱线增益特性研究[J]. 中国激光, 2017, 44(4):0411002.

    WANG J, GUO J Z, LI SH H, et al.. Study on gain characteristic of long wave spectral line in hydrogen fluoride laser[J]. Chinese Journal of Lasers, 2017, 44(4):0411002. (in Chinese)

[9] 郭建增,王杰,赵海涛,等. 连续波氟化氢激光输出光谱特性研究[J]. 激光与光电子学进展, 2018, 55(2):021404.

    GUO J Z, WANG J, ZHAO H T, et al.. Output spectrum of continuous wave hydrogen fluoride laser[J]. Laser & Optoelectronics Progress, 2018, 55(2):021404. (in Chinese)

[10] 孔心怡,柯常军,胡呈峰,等. 65 mJ室温Fe2+∶ZnSe中红外激光器[J].中国激光, 2018, 45(1):0101011.

    KONG X Y, KE CH J, HU CH F, et al.. 65 mJ Fe2+∶ZnSe mid-infrared laser at room temperature[J]. Chinese Journal of Lasers, 2018, 45(1):0101011. (in Chinese)

[11] 朱峰,黄珂,周松青,等. 基于非稳腔的非链式脉冲HF激光光束质量优化[J].中国激光, 2017, 44(4): 0401002.

    ZHU F, HUANG K, ZHOU S Q, et al.. Laser beam quality optimization of no-chain pulsed HF laser using unstable resonator[J]. Chinese Journal of Lasers, 2017, 44(4): 0401002. (in Chinese)

[12] HARRIS M R, MORRIS A V, GORTON E K. A closed-cycle 1 kHz pulse repetition frequency HF(DF) laser[J]. SPIE, 1998, 3268:247-251.

[13] VELIKANOV S D, EVDOKIMOV P , ZAPOLSKY F, et al.. Pulse periodic HF( DF) -laser of atmospheric pressure with pulse repetition rate up to 2 200 Hz[J]. SPIE, 2009, 7131: 71310.

[14] BRUNET H, MABRU M, VANNIER C. Repetitively-pulsed HF/DF chemical laser with high average power[J]. SPIE,1993, 1810:273-276.

[15] LACOUR B. High average power HF/DF lasers[J]. SPIE, 2000,4071:9-16.

[16] BULAEV V D, GUSEV V S, KAZANTSEV S Yu, et al.. High-power repetitively pulsed electric-discharge HF laser[J]. Quantum Electronics, 2010, 40:(7):615-618.

[17] 柯常军, 张阔海, 孙科,等.重复频率放电引发的脉冲HF(DF)激光器[J].红外与激光工程, 2007, 36(6):36-38.

    KE CH J,ZHANG K H,SUN K, et al.. A periodically pulsed HF/DF gas discharge laser[J]. Infrared and Laser Engineering, 2007, 36(6):36-38. (in Chinese)

[18] 王庆胜,游利兵,尹广玥,等.焦耳级放电激励紫外预电离HF激光器[J].强激光与粒子束, 2016, 28(8):081003.

    WANG Q SH, YOU L B, YIN G Y, et al.. Discharge-pumped joule-level HF laser with ultraviolet spark pre-ionization[J]. High Power Laser and Particle Beams, 2016, 28(8):081003. (in Chinese)

[19] 黄珂, 唐影, 易爱平, 等. 非链式电激励脉冲HF激光器[J]. 红外与激光工程, 2010, 39(6): 1026-1029.

    HUANG K, TANG Y, YI A P, et al.. Characteristics of non-chain discharge-pumped pulse HF laser[J]. Infrared and Laser Engineering, 2010, 39(6): 1026-1029. (in Chinese)

[20] 唐影,黄珂,易爱平,等. 放电激励重复频率HF激光器稳定输出实验研究[J]. 中国激光, 2012, 39: 0202004.

    TANG Y, HUANG K, YI A P, et al.. Experimental study on stable output of discharge-pumped repetition rate HF laser[J]. Chinese Journal of Lasers, 2012, 39: 0202004. (in Chinese)

[21] 黄珂,黄超,赵柳,等.流场均匀性对重频HF激光能量稳定输出的影响[J]. 红外与激光工程, 2016,45(1):0106007.

    HUANG K, HUANG CH, ZH L, et al.. Effects of flow field uniformity on energy stability of discharge initiated repetitively pulsed HF laser[J]. Infrared and Laser Engineering, 2016, 45(1):0106007. (in Chinese)

[22] 周松青,马连英,黄珂,等.非链式脉冲HF激光器激光介质净化技术[J]. 光子学报, 2016, 45(3):0314004.

    ZHOU S Q, MA L Y, HUANG K et al.. Purify technology of laser medium in non-chain pulsed HF laser[J]. Acta Photonica Sinica, 2016, 45(3):0314004. (in Chinese)

黄超, 黄珂, 马连英, 朱峰, 易爱平. 长时间运转100 Hz放电引发非链式HF激光器[J]. 光学 精密工程, 2019, 27(5): 1060. HUANG Chao, HUANG Ke, MA Lian-ying, ZHU Feng, YI Ai-ping. Hundred-Hertz nonchain HF laser with long operation period based on initiated discharge[J]. Optics and Precision Engineering, 2019, 27(5): 1060.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!