光学 精密工程, 2020, 28 (2): 424, 网络出版: 2020-05-27  

基于组合RNN网络的EMG信号手势识别

Gesture recognition with EMG signals based on ensemble RNN
作者单位
1 北京师范大学 人工智能学院, 北京 100875
2 Department of Computer Modeling and Multiprocessor Systems, St. Petersburg State University (SPbSU), Saint Petersburg 199034
3 Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS) 15064
引用该论文

周旭峰, 王醒策, 武仲科, Vladimir Korkhov, Luciano Paschoal Gaspary. 基于组合RNN网络的EMG信号手势识别[J]. 光学 精密工程, 2020, 28(2): 424.

ZHOU Xu-feng, WANG Xu-feng, WU Zhong-ke, Vladimir Korkhov, Luciano Paschoal Gaspary. Gesture recognition with EMG signals based on ensemble RNN[J]. Optics and Precision Engineering, 2020, 28(2): 424.

参考文献

[1] WAHID M F, TAFRESHI R, AL-SOWAIDI M, et al.. Subject-independent hand gesture recognition using normalization and machine learning algorithms[J]. Journal of Computational Science, 2018, 27: 69-76.

[2] REAZ M B I, HUSSAIN M S, MOHD-YASIN F. Techniques of EMG signal analysis: detection, processing, classification and applications (Correction)[J]. Biological Procedures Online, 2006, 8(1): 163-163.

[3] DU Y, JIN W, WEI W, et al.. Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation[J]. Sensors, 2017, 17(3): 458.

[4] GENG W, DU Y, JIN W, et al.. Gesture recognition by instantaneous surface EMG images[J]. Scientific Reports, 2016, 6: 36571.

[5] ROJAS-MARTNEZ M, MAANAS M A, ALONSO J F. High-density surface EMG maps from upper-arm and forearm muscles[J]. Journal of Neuroengineering and Rehabilitation, 2012, 9(1): 85.

[6] ROJAS-MARTNEZ M, MAANAS M A, ALONSO J F, et al.. Identification of isometric contractions based on High Density EMG maps[J]. Journal of Electromyography and Kinesiology, 2013, 23(1): 33-42.

[7] ZHANG X, ZHOU P. High-density myoelectric pattern recognition toward improved stroke rehabilitation[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(6): 1649-1657.

[8] ARIEF Z, SULISTIJONO I A, ARDIANSYAH R A. Comparison of five time series EMG features extractions using myo armband[C]. 2015 International Electronics Symposium (IES). IEEE, 2015: 11-14.

[9] LUH G C, MA Y H, YEN C J, et al.. Muscle-gesture robot Hand control based on sEMG signals with wavelet transform features and neural network classifier[C]. 2016 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2016, 2: 627-632.

[10] PATRICIA N, TOMMASIT T, CAPUTO B. Multi-source adaptive learning for fast control of prosthetics hand[C]. 2014 22nd International Conference on Pattern Recognition. IEEE, 2014: 2769-2774.

[11] SU Y, FISHER M H, WOLCZOWSKI A, et al.. Towards an EMG-controlled prosthetic hand using a 3-D electromagnetic positioning system[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(1): 178-186.

[12] TAO W, LAI Z H, LEU M C, et al.. Worker activity recognition in smart manufacturing using IMU and sEMG signals with convolutional neural networks[J]. Procedia Manufacturing, 2018, 26: 1159-1166.

[13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, 2012: 1097-1105.

[14] ABDEL-HAMID O, MOHAMED A, JIANG H, et al.. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545.

[15] YANG J, NGUYEN M N, SAN P P, et al.. Deep convolutional neural networks on multichannel time series for human activity recognition[C]. Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[16] ATZORI M, COGNOLATO M, MLLER H. Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands[J]. Frontiers in Neurorobotics, 2016, 10: 9.

[17] WEI W, WONG Y, DU Y, et al.. A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface[J]. Pattern Recognition Letters, 2017.

[18] CHEOK M J, OMAR Z, JAWARD M H. A review of hand gesture and sign language recognition techniques[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(1): 131-153.

[19] DU W, LI H. Vision based gesture recognition system with single camera[C]. WCC 2000-ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000. IEEE, 2000, 2: 1351-1357.

[20] NEFIAN A V, GRZESCZUK R, ERUHIMOV V. Dynamic gesture recognition from stereo sequences: U.S. Patent 7, 274, 800[P]. 2007-9-25.

[21] PATSADU O, NUKOOLKIT C, WATANAPA B. Human gesture recognition using kinect camera[C]. 2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2012: 28-32.

[22] LU W, TONG Z, CHU J. Dynamic hand gesture recognition with leap motion controller[J]. IEEE Signal Processing Letters, 2016, 23(9): 1188-1192.

[23] WANG P, SONG Q, HAN H, et al.. Sequentially supervised long short-term memory for gesture recognition[J]. Cognitive Computation, 2016, 8(5): 982-991.

[24] REN Z, MENG J, YUAN J. Depth camera based hand gesture recognition and its applications in human-computer-interaction[C]. 2011 8th International Conference on Information, Communications & Signal Processing. IEEE, 2011: 1-5.

[25] PU Q, GUPTA S, GOLLAKOTA S, et al.. Whole-home gesture recognition using wireless signals[C]. Proceedings of the 19th Annual International Conference on Mobile Computing & Networking. ACM, 2013: 27-38.

[26] GEORGI M, AMMA C, SCHULTZ T. Recognizing hand and finger gestures with IMU based motion and EMG based muscle activity sensing[C]. Biosignals, 2015: 99-108.

[27] SIMO M, NETO P, GIBARU O. Natural control of an industrial robot using hand gesture recognition with neural networks[C]. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016: 5322-5327.

[28] TAN S, YANG J. WiFinger: leveraging commodity WiFi for fine-grained finger gesture recognition[C]. Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2016: 201-210.

[29] WAN Q, LI Y, LI C, et al.. Gesture recognition for smart home applications using portable radar sensors[C]. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2014: 6414-6417.

[30] AMMA C, KRINGS T, BER J, et al.. Advancing muscle-computer interfaces with high-density electromyography[C]. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 2015: 929-938.

[31] MITRA S, ACHARYA T. Gesture recognition: a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(3): 311-324.

[32] MNTYJRVI J, KELA J, KORPIP P, et al.. Enabling fast and effortless customisation in accelerometer based gesture interaction[C]. Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia. ACM, 2004: 25-31.

[33] HAKONEN M, PIITULAINEN H, VISALA A. Current state of digital signal processing in myoelectric interfaces and related applications[J]. Biomedical Signal Processing and Control, 2015, 18: 334-359.

[34] PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C. Feature reduction and selection for EMG signal classification[J]. Expert Systems with Applications, 2012, 39(8): 7420-7431.

[35] ZHANG X, CHEN X, LI Y, et al.. A framework for hand gesture recognition based on accelerometer and EMG sensors[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2011, 41(6): 1064-1076.

[36] JU Z, LIU H. A generalised framework for analysing human hand motions based on multisensor information[C]. 2012 IEEE International Conference on Fuzzy Systems. IEEE, 2012: 1-6.

[37] KAUFMANN P, ENGLEHART K, PLATZNER M. Fluctuating EMG signals: investigating long-term effects of pattern matching algorithms[C]. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010: 6357-6360.

[38] AL-TIMEMY A H, BUGMANN G, ESCUDERO J, et al.. Classification of finger movements for the dexterous hand prosthesis control with surface electromyography[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3): 608-618.

[39] LI Z, WANG B, YANG C, et al.. Boosting-based EMG patterns classification scheme for robustness enhancement[J]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3): 545-552.

[40] CZUSZYN'SKI K, RUMIN'SKI J, KWAS'NIEWSKA A. Gesture recognition with the linear optical sensor and recurrent neural networks[J]. IEEE Sensors Journal, 2018, 18(13): 5429-5438.

[41] ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.

[42] MIAO Y, METZE F, RAWAT S. Deep maxout networks for low-resource speech recognition[C]. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. IEEE, 2013: 398-403.

[43] CHEN X, GUO H, WANG G, et al.. Motion feature augmented recurrent neural network for Skeleton-Based Dynamic Hand Gesture Recognition[C]. 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 2881-2885.

[44] MURAKAMI K, TAGUCHI H. Gesture recognition using recurrent neural networks[C]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1991: 237-242.

[45] VAMPLEW P, ADAMS A. Recognition and anticipation of hand motions using a recurrent neural network[C]. Proceedings of ICNN'95 - International Conference on Neural Networks, 1995.

[46] MARAQA M, ABU-ZAITER R. Recognition of arabic sign language (ArSL) using recurrent neural networks[C]. 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT). IEEE, 2008: 478-481.

[47] XU S, XUE Y. A long term memory recognition framework on multi-complexity motion gestures[C]. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2017, 1: 201-205.

[48] ENGLEHART K, HUDGINS B. A robust, real-time control scheme for multifunction myoelectric control[J]. Ieee Transactions on Biomedical Engineering, 2003, 50(7): 848-854.

[49] 梁浩, 刘克俭, 刘康, 等. 引入再检测机制的孪生神经网络目标跟踪[J]. 光学 精密工程, 2019, 27(7): 1621-1631.

    LIANG H, LIU K J, LIU K, et al.. Siamese network tracking with redetection mechanism[J]. Opt. Precision Eng., 2019, 27(7): 1621-1631. (in Chinese)

[50] 赵传, 张保明, 余东行, 等. 利用迁移学习的机载激光雷达点云分类[J]. 光学 精密工程, 2019, 27(7): 1601-1612.

    ZHAO CH, ZHANG B M, YU D X, et al.. Airborne LiDAR point cloud classification using transfer learning[J]. Opt. Precision Eng., 2019, 27(7): 1601-1612. (in Chinese)

[51] 方明, 孙腾腾, 邵桢. 基于改进YOLOv2的快速安全帽佩戴情况检测[J]. 光学 精密工程, 2019, 27(5): 1196-1205.

    FANG M, SUN T T, SHAO ZH. Fast helmet-wearing-condition detection based on improved YOLOv2[J]. Opt. Precision Eng., 2019, 27(5): 1196-1205. (in Chinese)

[52] CHEN I C, HILL J K, OHLEMLLER R, et al.. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 2011, 333(6045): 1024-1026.

[53] DIETTERICH T G. Ensemble methods in machine learning[C]. International workshop on multiple classifier systems. Springer, Berlin, Heidelberg, 2000: 1-15.

[54] 邱青菊. 表面肌电信号的特征提取与模式分类研究[D]. 上海: 上海交通大学, 2009.

    QIU Q J. Feature Extraction and Pattern Classification of Surface EMG Signals [D]. Shanghai: Shanghai Jiaotong University, 2009 (in Chinese).

[55] SHI H, XU M, LI R. Deep learning for household load forecasting-A novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5271-5280.

[56] SAK H, SENIOR A, BEAUFAYS F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]. Fifteenth Annual Conference of the International Speech Communication Association, 2014.

[57] 王鑫, 吴际, 刘超, 等. 基于 LSTM 循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.

    WANG X, WU J, LIU CH, et al.. Fault time series prediction based on LSTM cyclic neural network[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2018, 44(4): 772-784. (in Chinese)

[58] RANJAN R, CASTILLO C D, CHELLAPPA R. L2-constrained softmax loss for discriminative face verification[J]. arXiv preprint arXiv: 1703.09507, 2017.

[59] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: 1412.6980, 2014.

[60] 谭宇彤, 周旭峰, 孔令芝, 等. 面向肌电信号的虚拟现实提线木偶动画研究[J]. 软件学报, 2019, 30(10): 2964-2985.

    TAN Y T, ZHOU X F, KONG L ZH, et al.. Research on puppet animation controlled by electromyography (emg)in virtual reality environment[J]. Journal of Software, 2019, 30(10): 2964-2985. (in Chinese)

周旭峰, 王醒策, 武仲科, Vladimir Korkhov, Luciano Paschoal Gaspary. 基于组合RNN网络的EMG信号手势识别[J]. 光学 精密工程, 2020, 28(2): 424. ZHOU Xu-feng, WANG Xu-feng, WU Zhong-ke, Vladimir Korkhov, Luciano Paschoal Gaspary. Gesture recognition with EMG signals based on ensemble RNN[J]. Optics and Precision Engineering, 2020, 28(2): 424.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!