激光与光电子学进展, 2018, 55 (10): 102401, 网络出版: 2018-10-14  

基于双短腔耦合系统等离激元诱导吸收效应及多开关功能应用

Plasmon-Induced Absorption Based on Double-Stub Resonator and Its Application for Multi-Switching
作者单位
1 南昌航空大学, 江西省光电检测技术工程实验室, 江西 南昌 330063
2 南昌工学院机械与车辆工程学院, 江西 南昌330108
摘要
提出了一种基于金属-绝缘体-金属(MIM)表面等离激元波导的双短腔共振系统(DSR), 通过双短腔腔模之间的相互干涉, 实现了表面等离激元诱导吸收(PIA)效应。利用时域有限差分(FDTD)方法对其传输特性进行了数值仿真分析。对相位响应特性进行仿真分析, 发现PIA窗口会出现明显的反常色散现象, 该反常色散效应可应用于实现表面等离激元波导中的快光效应。另外, 还提出一种基于PIA效应的多开关功能应用, 并通过仿真分析了短腔腔长和折射率变化对PIA窗口的影响, 优化了开关功能的结构参数。具备这些特性的结构在表面等离激元光开关、滤波器等方面具有潜在的应用价值。
Abstract
We propose a double-stub resonator (DSR) based on a metal-insulator-metal (MIM) surface plasmon waveguide. The plasmon-induced absorption (PIA) effect is achieved by mutual interference between the two stub cavity modes. The transmission properties of the system are numerically simulated by the finite-difference time-domain (FDTD) method. Anomalous dispersion phenomenon can be achieved with the PIA windows based on the simulation analysis of phase response characteristics. Such anomalous dispersion effect can be used for realizing fast light effect in surface plasmonic waveguide. In addition, a multi-switch function based on the PIA effect is proposed. By simulating the influence of the changes of stub cavity′s length and the refractive index on the PIA window, the structural parameters of the switch function are optimized. Structures with these characteristics have potential applications in surface plasmon optical switches and filters and so on.
参考文献

[1] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

[2] 黎方名, 王登龙, 佘彦超, 等. 利用声子辅助跃迁调控半导体量子点电磁感应透明的光存储[J]. 激光与光电子学进展, 2017, 54(8): 082701.

    Li F M, Wang D L, She Y C, et al. Controlling optical storage in semiconductor quantum dot electromagnetically induced transparency by phonon-assisted transition[J]. Laser & Optoelectronics Progress, 2017, 54(8): 082701.

[3] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced materials, 2010, 16(19): 1685-1706.

[4] 单杭永, 祖帅, 方哲宇. 表面等离激元热电子超快动力学研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030002.

    Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030002.

[5] Fang Z Y, Cai J, Yan Z B, et al. Removing a wedge from a metallic nanodisk reveals a fano resonance[J]. Nano Letters, 2011, 11(10): 4475-4479.

[6] Zu S, Bao Y J, Fang Z Y. Planar plasmonic chiral nanostructures[J]. Nanoscale, 2016, 8(7): 3900-3905.

[7] Li H J, Wang L L, Liu J Q, et al. Investigation of the graphene based planar plasmonic filters[J]. Applied Physics Letters, 2013, 103(21): 211104.

[8] Wu T S, Liu Y M, Yu Z Y, et al. The sensing characteristics of plasmonic waveguide with a ring resonator[J]. Optics Express, 2014, 22(7): 7669-7677.

[9] Lu H, Liu X M, Mao D, et al. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators[J]. Optics Letters, 2012, 37(18): 3780-3782.

[10] 刘建国, 开桂云, 薛力芳, 等. 基于高非线性光子晶体光纤Sagnac环形镜的全光开关[J]. 物理学报, 2007, 56(2): 941-945.

    Liu J G, Kai G Y, Xue L F, et al. A all-optical switching based on highly nolinear photonic crystal fiber Sagnac loop mirror[J]. Acta Physica Sinica, 2007, 56(2): 941-945.

[11] 林蓉, 钱文超, 商云鹏, 等. 基于表面等离激元解复用器结构的双通道全光开关[J]. 激光与光电子学进展, 2018, 55(2): 022401.

    Lin R, Qian W C, Shang Y P, et al. Dual-channel all-optical switch based on plasmonic demultiplexer structure[J]. Laser & Optoelectronics Progress, 2018, 55(2): 022401.

[12] Wu Y D. High transmission efficiency wavelength division multiplexer based on metal-insulator-metal plasmonic waveguides[J]. Journal of Lightwave Technology, 2014, 32(24): 4844-4848.

[13] Harris S E, Field J E, Imamolu A. Nonlinear optical processes using electromagnetically induced transparency[J]. Physical Review Letters, 1990, 64(10): 1107-1110.

[14] Boller K J, Imamolu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593-2596.

[15] 杜英杰, 杨战营, 谢小涛, 等. 电磁感应透明的高阶非线性效应对光孤子的影响[J]. 光学学报, 2015, 35(2): 0227002.

    Du Y J, Yang Z Y, Xie X T, et al. Influence of higher nonlinearity to optical solitons in electromagnetically induced transparency medium[J]. Acta Optica Sinica, 2015, 35(2): 0227002.

[16] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

[17] 马平平, 张杰, 刘焕焕, 等. 金纳米棒三聚体中的等离激元诱导透明[J]. 物理学报, 2016, 65(21): 217801.

    Ma P P, Zhang J, Liu H H, et al. Plasmon induced transparency in the trimer of gold nanorods[J]. Acta Physica Sinica, 2016, 65(21): 217801.

[18] Artar A, Yanik A A, Altug H. Multispectral plasmon induced transparency in coupled meta-atoms[J]. Nano Letters, 2011, 11(4): 1685-1689.

[19] Chen J X, Wang P, Chen C C, et al. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators[J]. Optics Express, 2011, 19(7): 5970-5978.

[20] Zhu B Q, Tsang H K. High coupling efficiency silicon waveguide to metal-insulator-metal waveguide mode converter[J]. Journal of Lightwave Technology, 2016, 34(10): 2467-2472.

[21] Galvez F, del Valle J, Gomez A, et al. Plasmonic nanodevice with magnetic funcionalities: fabrication and characterization[J]. Optical Materials Express, 2016, 6(10): 3086-3096.

[22] Chen Z, Chen J J, Yu L, et al. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator[J]. Plasmonics, 2015, 10(1): 131-137.

[23] Qi J W, Chen Z Q, Chen J, et al. Independently tunable double Fano resonances in asymmetric MIM waveguide structure[J]. Optics Express, 2014, 22(12): 14688-14695.

[24] Li B X, Li H J, Zeng L L, et al. High-sensitivity sensing based on plasmon-induced transparency[J]. IEEE Photonics Journal, 2015, 7(5): 1-7.

[25] 姚鸣, 朱卡的, 袁晓忠, 等. 声子辅助的电磁感应透明和超慢光效应的研究[J]. 物理学报, 2006, 55(4): 1769-1773.

    Yao M, Zhu K D, Yuan X Z, et al. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems[J]. Acta Physica Sinica, 2006, 55(4): 1769-1773.

[26] 申新茹. 几种MIM波导结构中的表面等离激元诱导透明及慢光效应的理论研究[D]. 无锡: 江南大学, 2017.

    Shen X R. Theory study on surface plasmon-induced transparency and slow light effect in MIM waveguides[D]. Wuxi: Jiangnan University, 2017.

[27] Chen C Y, Un I W, Tai N H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Optics Express, 2009, 17(17): 15372-15380.

[28] Liu G D, Zhai X, Wang L L, et al. Actively tunable Fano resonance based on a T-shaped graphene nanodimer[J]. Plasmonics, 2016, 11(2): 381-387.

[29] Lin Q, Zhai X, Wang L L, et al. A novel design of plasmon-induced absorption sensor[J]. Applied Physics Express, 2016, 9(6): 062002.

[30] Wen K H, Hu Y H, Zhou J Y, et al. Plasmonic-induced absorption in an end-coupled metal-insulator-metal resonator structure[J]. Optical Materials Express, 2017, 7(2): 433-443.

[31] Li H J, Zhai X, Wang L L. Realizing controlled plasmonically induced reflection in metal-insulator-metal plasmonic waveguide-resonator coupling systems[J]. Applied Physics Express, 2015, 8(9): 092201.

[32] Zand I, Mahigir A, Pakizeh T, et al. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators[J]. Optics Express, 2012, 20(7): 7516-7525.

[33] Chen Z, Song X K, Jiao R Z, et al. Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting[J]. IEEE Photonics Journal, 2015, 7(6): 4801408.

[34] Cheng H, Chen S Q, Yu P, et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Applied Physics Letters, 2013, 103(20): 203112.

[35] Yang S L, Yu D M, Liu G D, et al. Perfect plasmon-induced absorption and its application for multi-switching in simple plasmonic system[J]. Plasmonics, 2018, 13(3): 1015-1020.

[36] Neo Y, Matsumoto T, Watanabe T, et al. Transformation from plasmon-induced transparence to -induced absorption through the control of coupling strength in metal-insulator-metal structure[J]. Optics Express, 2016, 24(23): 26201-26208.

[37] Hu J F, Liu J, Liu B, et al. Plasmon-induced absorption and its applications for fast light and sensing based on double-stub resonators[J]. Optik, 2018, 159: 254-260.

胡金凤, 刘娟, 刘彬, 陈佳, 梁红勤, 廖云程, 蔡旭辉. 基于双短腔耦合系统等离激元诱导吸收效应及多开关功能应用[J]. 激光与光电子学进展, 2018, 55(10): 102401. Hu Jinfeng, Liu Juan, Liu Bin, Chen Jia, Liang Hongqin, Liao Yuncheng, Cai Xuhui. Plasmon-Induced Absorption Based on Double-Stub Resonator and Its Application for Multi-Switching[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!