红外技术, 2017, 39 (1): 8, 网络出版: 2017-03-29   

非视域成像系统的研究现状与进展

Research Status and Progress of the Non-line-of-sight Vision Imaging System
作者单位
1 伊犁师范学院电子与信息工程学院, 新疆伊宁 835000
2 南京大学电子科学与工程学院, 江苏南京 210046
摘要
传统的光学成像技术是通过探测器对视线区域内的场景成像, 而非视域成像技术是对观察者视线之外的区域进行成像, 它通过一个中介面, 对被其他物体遮挡住的隐藏物体成像(如拐角处、烟雾后等), 是近年来刚发展起来的一种新的光学探测技术。该项技术对于反恐、灾难救援、城市交通等都有重要意义。本文针对国内外非视域成像系统的特点进行总结分析, 根据成像系统的成像机制不同, 将目前非视域成像系统分为 4种主要类型, 分析其应用的优缺点, 并从成像装置、成像分辨率和重建算法几个方面分析其研究趋势。
Abstract
The non-line-of-sight vision imaging technology is different from the traditional optical imaging technology, which can go through an intermediary and imaging hidden objects (such as around the corner, behind the smoke, etc.)which are blocked by other objects. The non-line-of-sight vision imaging technology is a kind of newly developed technologies in recent years, which can detect the areas outside the sight of observer. The technology has important significances for counterterrorism, disaster relief, city traffic and so on. The paper summarized and analyzed the characteristics of the non-line-of-sight vision imaging system at home and abroad according to the imaging mechanism of the system. The imaging system can be divided into four main types, then the advantages and disadvantages in application of which were analyzed. And the development trend of imaging device, imaging resolution and reconstruction algorithm were also analyzed.
参考文献

[1] Repasi E, Lutzmann P, Steinvall O, et al. Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations[J]. Applied Optics, 2009, 48(31): 5956-5969.

[2] Repasi E, Lutzmann P, Steinvall O, et al. Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations.[J]. Applied Optics, 2009, 48(31): 5956-5969.

[3] 许凯达, 金伟其, 刘敬, 等. 基于激光距离选通成像的非视域成像应用[J].红外与激光工程 , 2012, 41(8): 2073-2078.

    Xu Kai-da, Jin Wei-qi, Liu Jing, et al. Non-line-of-sight imaging based on laser range-gated imaging technology[J]. Infrared and Laser Engineering, 2012, 41(8): 2073-2078.

[4] Xu K, Jin W, Zhao S, et al. Image contrast model of non-line-of-sight imaging based on laser range-gated imaging[J]. Optical Engineering, 2013, 53(6):167-174.

[5] 许凯达 . 基于激光距离选通成像的非视域成像理论与方法研究 [D].北京: 北京理工大学, 2014. Xu Kai-da. Research on methods and theory for non-line-of-sight imaging based on laser range-gated imaging[D]. Beijing: Beijing Institute of Technology, 2014.

[6] Laurenzis M, Velten A. Non-line-of-sight active imaging of scattered photons[C]//Proc. of SPIE, 2013, 8897: 889706.

[7] Laurenzis M, Christnacher F, Velten A. Study of a dual mode SWIR active imaging system for direct imaging and non-line of sight vision[C]//Proc. of SPIE, 2015, 9465: 946509.

[8] Laurenzis M, Velten A. Feature selection and back-projection algorithms for nonline-of-sight laser–gated viewing[J]. Journal of Electronic Imaging, 2014, 23(6):063003.

[9] Pandharkar R, Velten A, Bardagjy A, et al. Estimating Motion and size of moving non-line-of-sight objects in cluttered environments[C]// IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2011: 265-272.

[10] Naik N, Zhao S, Velten A, et al. Single view reflectance capture using multiplexed scattering and time-of-flight imaging[J]. Acm Transactions on Graphics, 2011, 30(6):61-64.

[11] Wu D, Velten A, O’Toole M, et al. Decomposing Global Light Transport Using Time of Flight Imaging[J]. International Journal of Computer Vision, 2012, 107(2): 123-138.

[12] Velten A, Wu D, Jarabo A, et al. Femto-photography: capturing and visualizing the propagation of light[J]. Acm Transactions on Graphics, 2013, 32(4): 96-96.

[13] Heide F, Hullin M B, Gregson J, et al. Low-budget transient imaging using photonic mixer devices[J]. Acm Transactions on Graphics, 2013, 32(4): 45:1-45:10.

[14] Heide F, Xiao L, Heidrich W, et al. Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 3222-3229.

[15] Kirmani A, Hutchison T, Davis J, et al. Looking Around the Corner using Ultrafast Transient Imaging[J]. International Journal of Computer Vision, 2011, 95(95): 13-28.

[16] Gupta O, Velten A, Willwacher T, et al. Reconstruction of hidden 3D shapes using diffuse reflections[J]. Optics Express, 2012, 20(17): 19096-19108.

[17] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 2012, 3(2):745.

[18] Bhandari A, Kadambi A, Whyte R, et al. Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization[J]. Optics Letters, 2014, 39(6): 1705-1708.

[19] Naik N, Barsi C, Velten A, et al. Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light[J]. Journal of the Optical Society of America A, 2014, 31(5): 957-963.

[20] Raviv D, Barsi C, Naik N, et al. Pose estimation using time-resolved inversion of diffuse light[J]. Optics Express, 2014, 22(17): 20164-20176.

[21] Mauro B, Jessica Z, Alberto T, et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode[J]. Optics Express, 2015, 23(16): 20997-21011.

[22] Gariepy G, Tonolini F, Henderson R, et al. Tracking hidden objects with a single-photon camera[J]. Physics, 2015.

[23] Gariepy G, Tonolini F, Henderson R, et al. Detection and tracking of moving objects hidden from view[J]. Nature Photonics, 2016, 10(1): 23-27.

[24] Gariepy, Genevieve, Krstajic, et al. Single-photon sensitive light-in-

    flight imaging[J]. Nature Communications, 2015, 6: 6021

[25] Laurenzis M, Klein J, Bacher E, et al. Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths[J]. Optics Letters, 2015, 40(20): 4815-4818.

[26] Laurenzis M, Christnacher F, Hullin M B, et al. Study of single photon counting for non-line-of-sight vision[C]//Proc. of SPIE, 2015, 9492: 94920K.

[27] Jin C, Song Z, Zhang S, et al. Recovering three-dimensional shape through a small hole using three laser scatterings[J]. Optics Letters, 2015, 40(1): 52-55.

[28] Singh A K, Naik D N, Pedrini G, et al. Looking through a diffuser and around an opaque surface: a holographic approach[J]. Optics Express, 2014, 22(7): 7694-7701.

[29] Singh A K, Naik D N, Pedrini G, et al. Looking around the corner and through a diffuser: different approaches[C]//Digital Holography and Three-Dimensional Imaging, 2014: DTu3B.3.

[30] Singh A K, Naik D N, Pedrini G, et al. Real-time imaging through thin scattering layer and looking around the opaque surface[C]//in Digital Holography & 3-D Imaging Meeting, OSA Technical Digest (Optical Society of America, 2015), 2015: DTh3A.5.

王雪峰, 陈兴稣, 苏金善, 王元庆. 非视域成像系统的研究现状与进展[J]. 红外技术, 2017, 39(1): 8. WANG Xuefeng, CHEN Xingsu, SU Jinshan, WANG Yuanqing. Research Status and Progress of the Non-line-of-sight Vision Imaging System[J]. Infrared Technology, 2017, 39(1): 8.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!