光学学报, 2012, 32 (3): 0312001, 网络出版: 2012-03-06   

空间紫外遥感仪器光谱响应度定标环境的研究

Study on Calibration Environment of Spectral Responsivity for Space Ultraviolet Remote Sensing Instrument
作者单位
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
为了减小空间紫外遥感仪器(SURSI)光谱响应度定标不确定度,实现SURSI在轨的高精度探测,对SURSI定标环境进行了深入的分析研究。利用光学薄膜的电磁场理论数值计算出铝+氟化镁膜在250~400 nm波段,真空和大气两种环境下的反射率值并进行比对。通过构建SURSI真空/大气响应度比对测试研究系统,对SURSI整机光谱响应度在两种环境下的差异进行了实验研究,在250~400 nm波段,平均偏差可达3.8%。理论分析及实验结果表明:受仪器内部光学元件铝+氟化镁膜光学性质的影响,SURSI光谱响应度在真空和大气不同环境下存在明显差异,且偏差值具有波长相关性,直接说明SURSI辐射定标在真空环境下完成的必要性。
Abstract
Reducing the radiometric calibration uncertainty of the space ultraviolet remote sensing instrument (SURSI) in laboratory is very important to improve the instrument′s detection accuracy in orbit. A deep study on the calibration environment of SURSI is made. The Al+MgF2 film reflectivity of 250~400 nm in vacuum/air environment are calculated by the film electromagnetic theory and two results are compared. The experiment is completed, which is study on the discrepancy in the SURSI spectral responsivity when it is at different environments by establishing SURSI responsivity vacuum/air comparison system. The average deviation is about 3.8% from 250 to 400 nm. Theoretical analysis and measurement result show that because they are affected by the optical properties of Al+MgF2 film which are decided by optical components inside the SURSI, the spectral responsivities of SURSI have distinct difference in vacuum/air environment and the deviation depends on wavelength. It is necessary to make the radiation calibration of SURSI in vacuum environment.
参考文献

[1] H. Weiss, R. P. Cebula, K. Laamann et al.. Evaluation of the NOAA-11 solar backscatter ultraviolet radiometer, Mod 2 (SBUV/2): inflight calibration [C]. SPIE, 1991, 1493: 80~90

[2] J. R. Herman, P. K. Bhartia, O. Torres et al.. Global distribution of UV-absorbing aerosols from Nimbus 7/Toms data [J]. J. Geophys. Res., 1997, 102: 16911~16922

[3] K. Bramstedt, J. Gleason, D. Loyola et al.. Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996~2000[J]. Atmos. Chem. Phys. Discuss, 2003, 3(5): 1131~1157

[4] Gary K. Corlett, Paul S. Monks. A comparison of total column ozone values derived from the global ozone monitoring experiment (GOME), the Tiros operational vertical sounder (TOVS), and the total ozone mapping spectrometer (TOMS)[J]. J. Atmos. Sci., 2001, 58(9): 1103~1116

[5] S. Noёl, H. Bovensmann, J. P. Burrows et al.. The SCIAMACHY instrument on ENVISAT-1 [C]. SPIE, 1998, 3498: 94~104

[6] H. Bovensmann, M. Buchwitz, J. Frerick et al.. SCIAMACHY on ENVISAT: in-flight optical performance and first results [C]. SPIE, 2004, 5235: 160~173

[7] P. F. Levelt, E. Hilsenrath, G. W. Leppelmeier et al.. Science objectives of the ozone monitoring instrument [J]. IEEE Trans. Geosc. Rem. Sens., 2006, 44(5): 1199~1208

[8] J. W. Leitch, J. V. Rodriguez, M. Dittman. Limb scatter ozone profiling sensor for the NPOESS ozone mapping and profiler suite (OMPS)[C]. SPIE, 2003, 4891: 13~21

[9] Brian K. McComas, Colin Seftor, Quinn Remund. End-to-end modeling of the ozone mapping and profiler suite [C]. SPIE, 2004, 5420: 106~117

[10] Marcel Dobber, Ruud Dirksen, Pieternel Levelt et al.. EOS-aura ozone monitoring instrument in-flight performance and calibration [C]. SPIE, 2006, 6296: 62960R-1

[11] Erik Zoutman, Carina Olij. Calibration approach for sciamachy[C]. SPIE, 1997, 3117: 306~317

[12] Dondald F. Heath. Large aperture spectral radiance calibration source for ultraviolet remote sensing instruments [C]. SPIE, 2003, 4891: 335~342

[13] D. F. Heath, Zhongying Wei, W. K. Fowler et al.. Comparison of spectral radiance calibration of SBUV/2 satellite ozone monitoring instruments using integrating sphere and flat-plate diffuser techniques [J]. Metrologia, 1993, 30(4): 259~264

[14] A. Hahne, J. Callies, A. Lefebvre et al.. Calibration of the GOME instrument for ERS-2[J]. ESA Journal, 1994, 18(20): 119~128

[15] 张振铎, 王淑荣, 李福田 等. 空间紫外遥感仪器光谱辐照度响应度定标方法研究[J]. 光学学报, 2010, 30(6): 1816~1821

    Zhang Zhenduo, Wang Shurong, Li Futian. Study on calibration method of spectral irradiance responsivity for space ultraviolet remote sensing instrument [J]. Acta Optica Sinica, 2010, 30(6): 1816~1821

[16] 张振铎, 王淑荣, 李福田 等. 发散光照射方法标定空间紫外遥感仪器光谱辐照度响应度[J]. 光电工程, 2008, 35(11): 51~56

    Zhang Zhenduo, Wang Shurong, Li Futian. Spectral irradiance responsivity calibration of space ultraviolet remote sensing instrument by diverging light illuminating method[J]. Opto-Electronic Engineering, 2008, 35(11): 51~56

[17] 王淑荣, 宋克非, 李福田. 星载太阳紫外光谱监视器的地面辐射定标[J]. 光学学报, 2007, 27(12): 2256~2261

    Wang Shurong, Song Kefei, Li Futian. Radiometric calibration on ground of satellite-borne solar ultraviolet spectral monitor [J]. Acta Optica Sinica, 2007, 27(12): 2256~2261

[18] 邢进, 王淑荣, 李福田. 利用积分球光源定标空间紫外遥感光谱辐射计 [J]. 光学 精密工程, 2006, 14(2): 185~190

    Xing Jin, Wang Shurong, Li Futian. Spectral radiance responsivity calibration of ultraviolet remote sensing spectroradiometer in space using integrating sphere [J]. Opt. & Precision Engng., 2006, 14(2): 185~190

[19] G. Hass, W. R. Hunter, R. Tousey. Reflectance of evapourated aluminum in the vacuum ultraviolate [J]. J. Opt. Soc. Am., 1956, 46(12): 1009~1012

[20] G. Hass, R. Tousey. Reflecting coatings for the extreme ultraviolet [J]. J. Opt. Soc. Am., 1959, 49(6): 593~602

[21] L. R. Canfield, G. Hass, J. E. Waylonis. Further studies on MgF2 overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet [J]. Appl. Opt., 1996, 5(1): 45~50

[22] 张振铎, 王淑荣, 李福田 等. 氟化镁窗口氘灯真空辐射衰减特性研究[J]. 光学 精密工程, 2009, 17(3): 482~487

    Zhang Zhenduo, Wang Shurong, Li Futian. Study on radiation degradation characteristics of MgF2 windowed deuterium lamp in vacuum environment [J]. Opt. & Precision Engng., 2009, 17(3): 482~487

[23] 刘颖, 李福田. 若干材料紫外真空紫外漫反射特性的研究[J]. 光学学报, 2001, 21(3): 371~375

    Liu Ying, Li Futian. Characteristics of various diffuser materials at UV-VUV spectral range [J]. Acta Optica Sinica, 2001, 21(3): 371~375

[24] 梁铨廷. 物理光学[M]. 北京:电子工业出版社, 2008. 145~149

    Liang Quanting. Physical Optics [M]. Beijing: Publishing House of Electronics Industry, 2008. 145~149

[25] 唐晋发, 顾培夫, 刘旭 等. 现代光学薄膜技术[M]. 杭州:浙江大学出版社,2007. 115~120

    Tang Jinfa, Gu Peifu, Liu Xu et al.. Morden Optical Thin Film Technology [M]. Hangzhou: Zhejiang University Press, 2007. 115~120

[26] 万国贤, 韩之杰. 空气折射率的一种计算方法[J]. 光学 精密工程, 1994, 2(3): 27~30

    Wan Guoxian, Han Zhijie. A calculating way for refractive index of air [J]. Opt. & Precision Engng., 1994, 2(3): 27~30

张振铎, 王淑荣, 李宏壮, 卫沛锋, 王亮. 空间紫外遥感仪器光谱响应度定标环境的研究[J]. 光学学报, 2012, 32(3): 0312001. Zhang Zhenduo, Wang Shurong, Li Hongzhuang, Wei Peifeng, Wang Liang. Study on Calibration Environment of Spectral Responsivity for Space Ultraviolet Remote Sensing Instrument[J]. Acta Optica Sinica, 2012, 32(3): 0312001.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!