光学与光电技术, 2018, 16 (3): 51, 网络出版: 2018-07-31  

CdSe/ZnS 量子点/介孔硅复合膜的光致发光谱

Photoluminescence Spectra of CdSe/ZnS Quantum Dot/Mesoporous Silicon Composite Membranes
作者单位
1 新疆轻工职业技术学院, 新疆 乌鲁木齐 830000
2 新疆大学物理科学与技术学院, 新疆 乌鲁木齐 830046
摘要
研究了CdSe/ZnS 量子点与介孔多孔硅偶联吸附结合的复合膜的光致发光谱。实验比较了CdSe/ZnS 量子点与硅复合和与多孔硅复合的光致发光,发现量子点与多孔硅复合的发光比与硅复合有很大的增强。对不同孔径的多孔硅与量子点复合后的光致发光谱的比较发现,由于孔径大小对量子点浸入介孔硅有影响,孔径大浸入的量子点较多所以大孔径多孔硅的发光比小孔径的发光强。量子点与多孔硅复合的光致发光具有量子点荧光发光强度高、稳定和窄带发光的特点,对进一步应用于基于多孔硅器件的光学传感器有重要意义。
Abstract
The photoluminescence spectra of the composite membranes of CdSe/ZnS quantum dots and mesoporous porous silicon are studied. The photoluminescence spectra of the CdSe/ZnS quantum dots composited with the silicon and composited with the porous silicon are compared. The results show that the luminescence intensity of the quantum dots /porous silicon composite membranes is greatly enhanced. Compared the photoluminescence spectra of two quantum dots composited porous silicon samples with different pore diameters, it is found that the photoluminescence spectra intensity of quantum dots composited with porous silicon with large pores are strong due to the little pore size of mesoporous silicon will cause the quantum dots to plug the pores and prevent others from entering the mesoporous membranes, while large pores can combine more quantum dots. The photoluminescence of porous silicon composited with quantum dot membranes is high intensity, stability and narrow-band, which has important significance for further application in optical sensor based on porous silicon devices.
参考文献

[1] Torres-Costa V, Agulló-Rueda F, Martín-Palma RJ, et al.Porous silicon optical devices for sensing applications[J]. Opt. Mater, 2005, 27: 1084-1087.

[2] Stefano L D, Arcari P, Lamberti A, et al. DNA optical detection based on porous silicon technology: from biosensors to biochips[J]. Sensors , 2007, (7): 214-221.

[3] Lin V S, Motesharei K, Dancil K P, et al. A porous silicon-based optical interferometric biosensor[J]. Science, 1997, (278): 840-843.

[4] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016.

[5] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018.

[6] Chun-Yang Z, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor[J]. Nature materials, 2005, 4(11): 826.

[7] Lott J A, Ledentsov N N, Ustinov V M, et al. Vertical cavity lasers based on vertically coupled quantum dots[J]. Electronics Letters, 1997, 33(13): 1150-1151.

[8] Sun Q, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nature photonics, 2007, 1(12): 717-722.

[9] Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer[J]. Nano letters, 2007, 7(10): 3065-3070.

[10] Stanisavljevic M, Krizkova S, Vaculovicova M, et al. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application[J]. Biosensors and Bioelectronics, 2015, 74(5): 562-574.

[11] Gerion D, Parak W J, Williams S C, et al. Sorting fluorescent nanocrystals with DNA[J]. Journal of the American Chemical Society, 2002, 124(24): 7070-7074.

[12] Meeprasert A, Hannongbua S, Rungrotmongkol T. Key binding and susceptibility of NS 3/4 A serine protease inhibitors against hepatitis C virus[J]. Journal of chemical information and modeling, 2014, 54(4): 1208-1217.

[13] Yang L, Li Y. Simultaneous detection of escherichia coli O157∶ H7 and salmonella typhimurium using quantum dots as fluorescence labels[J]. Analyst, 2006, 131(3): 394-401.

[14] Wu P, Zhao T, Wang S, et al. Semicondutor quantum dots-based metal ion probes[J]. Nanoscale, 2014, 6(1): 43-64.

[15] Ziaudeen S A, Gaddam R R, Pallapothu P K, et al. Supra gap excitation properties of differently confined PbS-nano structured materials studied with opto-impedance spectroscopy[J]. Journal of Nanophotonics, 2013, 7(1): 073075-073075.

[16] Talapin D V, Rogach A L, Kornowski A, et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine trioctylphosphine oxide trioctylphospine mixture[J]. Nano letters, 2001, 1(4): 207-211.

[17] Gerion D, Pinaud F, Williams S C, et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots[J]. The Journal of Physical Chemistry B, 2001, 105(37): 8861-8871.

[18] Kirchner C, Liedl T, Kudera S, et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles[J]. Nano letters, 2005, 5(2): 331-338.

[19] Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe ZnS quantum dot bioconjugates using an engineered recombinant protein[J]. Journal of the American Chemical Society, 2000, 122(49): 12142-12150.

张红梅, 吕长武. CdSe/ZnS 量子点/介孔硅复合膜的光致发光谱[J]. 光学与光电技术, 2018, 16(3): 51. ZHANG Hong-mei, L Chang-wu. Photoluminescence Spectra of CdSe/ZnS Quantum Dot/Mesoporous Silicon Composite Membranes[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2018, 16(3): 51.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!