Matter and Radiation at Extremes, 2016, 1 (4): 224, Published Online: May. 9, 2017  

How far away are accurate equations of state determinations Some issues on pressure scales and non-hydrostaticity in diamond anvil cells

Lei Liu 1,2Yan Bi 1,*
Author Affiliations
1 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering, Mianyang, 621900, China
2 Department of Earth Science, Uppsala University, Uppsala, SE, 75236, Sweden
Abstract
The equations of state (EOSs) of materials are the cornerstone of condensed matter physics, material science, and geophysics. However, acquiring an accurate EOS in diamond anvil cell (DAC) experiments continues to prove problematic because the current lack of an accurate pressure scale with clarified sources of uncertainty makes it difficult to determine a precise pressure value at high pressure, and nonhydrostaticity affects both the volume and pressure determination. This study will discuss the advantages and drawbacks of various pressure scales, and propose an absolute pressure scale and correction methods for the effects of non-hydrostaticity. At the end of this paper, we analyze the accuracy of the determined EOS in the DAC experiments we can achieve to date.
References

[1] G. Shen, P. Chow, Y. Xiao, S. Sinogeikin, Y. Meng, et al., HPCAT: an integrated high pressure synchrotron facility at the advanced photon source, High Press. Res. 28 (2008) 145.

[2] L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, V. Prakapenka, C. Prescher, et al., The most incompressible metal osmium at static pressures above 750 gigapascals, Nature 525 (2015) 226.

[3] S. Tateno, K. Hirose, Y. Ohishi, Y. Tatsumi, The structure of iron in Earth's inner core, Science 330 (2010) 359.

[4] K. Syassen, W.B. Holzapfel, Isothermal compression of Al and Ag to 120 kbar, J. Appl. Phys. 49 (1978) 4427.

[5] W.B. Holzapfel, Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above, J. Phys. Chem. Ref. Data 30 (2001) 515.

[6] K.W. Katahara, M.H. Manghnani, E.S. Fisher, Pressure derivatives of the elastic moduli of niobium and tantalum, J. Appl. Phys. 47 (1976) 434.

[7] D.J. Steiberg, Some observations regarding the pressure dependence of the bulk modulus, J. Phys. Chem. Solids 43 (1982) 1173.

[8] N.C. Holmes, J.A. Moriarty, G.R. Gathers, W.J. Nellis, The equation of state of platinum to 660 GPa (6.6 Mbar), J. Appl. Phys. 66 (1989) 2962.

[9] R.S. Hixson, J.N. Fritz, Sock compression of tungsten and molybdenum, J. Appl. Phys. 71 (1992) 1721.

[10] W.J. Nellis, J.A. Moriarty, A.C. Mitchell, M. Ross, R.G. Dandrea, et al., Metal physics at ultrahigh pressure: aluminum, copper, and lead as prototypes, Phys. Rev. Lett. 60 (1988) 1414.

[11] C.S. Zha, H.K. Mao, R.J. Hemley, Elasticity of MgO and a primary pressure scale to 55 GPa, PNAS 97 (2000) 13494.

[12] P.I. Dorogokupets, A.R. Oganov, Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shockwave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures, Phys. Rev. B 75 (2007) 024115.

[13] W.B. Holzapfel, Equations of state for Cu, Ag, and Au and problems with shock wave reduced isotherms, High Press. Res. 30 (2010) 372.

[14] K. Kunc, K. Syassen, P(V) equations of state of solids: density functional theory calculations and LDA versus GGA scaling, Phys. Rev. B 81 (2010) 134102.

[15] K. Kunc, I. Loa, K. Syassen, Equation of state and phonon frequency calculations of diamond at high pressure, Phys. Rev. B 81 (68) (2003) 094107.

[16] H.K. Mao, P.M. Bell, Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 49 (1978) 3276.

[17] H.K. Mao, J. Xu, P.M. Bell, Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions, J. Geophys. Res. 91 (1986) 4673.

[18] F. Datchi, R. LeToullec, P. Loubeyre, Improved calibration of the SrB4O7:Sm2t optical pressure gauge: advantages at very high pressures and high temperatures, J. Appl. Phys. 81 (1997) 3333.

[19] S.V. Raju, J.M. Zaug, B. Chen, J. Yuan, J.W. Knight, et al., Determination of the variation of the fluorescence line positions of ruby, strontium tetraborate, alexandrite, and samarium-doped yttrium aluminum garnet with pressure and temperature, J. Appl. Phys. 110 (2011) 023521.

[20] Q. Jing, Q. Wu, L. Liu, J. Xu, Y. Bi, et al., An experimental study on SrB4O7:Sm2t as a pressure sensor, J. Appl. Phys. 113 (2013) 023507.

[21] M.I. Eremets, Megabar high-pressure cells for Raman measurements, J. Raman Spectrosc. 34 (2003) 515.

[22] L. Sun, A.L. Ruoff, G. Stupian, Convenient optical pressure gauge for multipressure calibrated to 300 GPa, Appl. Phys. Lett. 86 (2005) 014103.

[23] Y. Akahama, H. Kawamura, Pressure calibration of diamond anvil Raman gauge to 310 GPa, J. Appl. Phys. 100 (2006) 043516.

[24] B.J. Baer, M.E. Chang, W.J. Evans, Raman shift of stressed diamond anvils: pressure calibration and culet geometry dependence, J. Appl. Phys. 104 (2008) 034504.

[25] T. Kawamoto, K.N. Matsukage, T. Nagai, K. Nishimura, T. Mataki, Raman spectroscopy of cubic boron nitride under high temperature and pressure conditions: a new optical pressure marker, Rev. Sci. Instrum. 75 (2004) 2451.

[26] A.F. Goncharov, J.C. Crowhurst, J.K. Dewhurst, S. Sharma, Raman spectroscopy of cubic boron nitride under extreme conditions of high pressure and temperature, Phys. Rev. B 72 (2005) 100104(R).

[27] A.F. Goncharov, S. Sinogeikin, J.C. Crowhurst, M. Ahart, D. Lakshtanov, et al., Cubic boron nitride as a primary calibrant for a high temperature pressure scale, High Press. Res. 27 (2007) 409.

[28] H. Spetzler, A. Shen, G. Shen, G. Herrmannsdoerfer, H. Schulze, et al., Ultrasonic measurements in a diamond anvil cell, Phys. Earth Planet. Inter. 98 (1996) 93.

[29] S.D. Jacobsen, H.A. Spetzler, H.P. Reichmann, J.R. Smyth, S.J. Mackwell, et al., Gigahertz ultrasonic interferometry at high P and T: new tools for obtaining a thermodynamic equation of state, J. Phys. Condens. Matter 14 (2002) 11525.

[30] N. Chigarev, P. Zinin, D. Mounier, A. Bulou, A. Zerr, et al., Laser ultrasonic measurements in a diamond anvil cell on Fe and the KBr pressure medium, J. Phys. Conf. Ser. 278 (2011) 012017.

[31] J. Lin,W. Strurhahn, J. Zhao, G. Shen, H.K. Mao, et al., Sound velocities of hot dense iron: Birch's law revisited, Science 308 (2005) 1892.

[32] F. Birch, Finite elastic strain of cubic crystal, Phys. Rev. 71 (1947) 809.

[33] F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressure and 300 K, J. Geophys. Res. 95 (1978) 1257.

[34] P. Vinet, J. Ferrante, J.H. Rose, J.R. Smith, Compressibility of solids, J. Geophys. Res. 92 (1987) 9319.

[35] P. Vinet, J.H. Rose, J. Ferrante, J.R. Smith, Universal features of the equation of state of solids, J. Phys. Condens. Matter 1 (1989) 1941.

[36] J. Poirier, Introduction to the Physics of the Earth's Interior, Cambridge University Press, Cambridge, 2000, p. 78.

[37] G. Simmons, H. Wang, Single Crystal Elastic Constant and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, 1971.

[38] W.B. Daniels, C.S. Smith, Pressure derivatives of the elastic constants of copper, silver and gold to 10000 Bars, Phys. Rev. 111 (1958) 713.

[39] J.C. Jamieson, J.N. Fritz, M.H. Manghnani, in: S. Akimoto, M.H. Manghnani (Eds.), High-pressure Research in Geophysics,” of Advances in Earth and Planetary Sciences vol. 12, Center for Academic Publishing, Tokyo, 1982.

[40] Y. Wang, D. Chen, X. Zhang, Calculated equation of state of Al, Cu, Ta, Mo, and W to 1000 GPa, Phys. Rev. Lett. 84 (2000) 3220.

[41] Y. Wang, R. Ahuja, B. Johansson, Reduction of shock-wave data with mean-field potential approach, Phys. Rev. B 92 (2002) 6616.

[42] Y. Wang, Theoretical Studies of Thermodynamic Properties of Condensed Matter Under High Temperature and High Pressure, Ph.D thesis, Uppsala University, Uppsala, 2004.

[43] A.D. Chijioke, W.J. Nellis, A. Soldatov, I.F. Silvera, The ruby pressure standard to 150 GPa, J. Appl. Phys. 98 (2005) 114905.

[44] K. Jin, X. Li, Q. Wu, H. Geng, L. Cai, et al., The pressure-volumetemperature equation of state of MgO derived from shock Hugoniot data and its application as a pressure scale, J. Appl. Phys. 107 (2010) 113518.

[45] K. Jin, Q. Wu, H. Geng, X. Li, L. Cai, et al., Pressure-volume-temperature equation of state of Au and Pt up to 300 GPa and 3000 K: Internally consistent pressure scales, High Press. Res. 31 (2011) 560.

[46] Q. Wu, Studies on Equation of State and Gru¨neisen Parameter for Metals at High Pressures and Temperatures, Ph.D. thesis, China Academy of Engineering Physics, 2004.

[47] A.L. Ruoff, R.C. Lincoln, Y.C. Chen, High-pressure calibration with a new absolute-pressure gauge, J. Appl. Phys. 22 (1973) 310.

[48] B. Li, J. Kung, T. Uchida, Y. Wang, Pressure calibration to 20 GPa by simultaneous use of ultrasonic and X-ray techniques, J. Appl. Phys. 98 (2005) 013521.

[49] J. Xu, E. Huang, Primary pressure scaleeA proposal, J. Geol. Soc. China 41 (1998) 199.

[50] K. Syassen, Ruby under pressure, High Press. Res. 28 (2008) 75.

[51] K.K. Zhuravlev, A.F. Goncharov, S.N. Tkachev, P. Dera, V.B. Prakapenka, Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: Implication for a primary pressure scale, J. Appl. Phys. 113 (2013) 113503.

[52] R.A. Forman, G.J. Piermarini, J.D. Barnett, S. Block, Pressure measurement made by the utilization of ruby sharp-line luminescence, Science 176 (1972) 284.

[53] I.V. Aleksandrov, A.F. Goncharov, A.N. Zisman, S.M. Stishov, Diamond at high pressures: Raman scattering, equation of state, and high pressure scale, Sov. Phys. JETP 66 (1987) 384.

[54] W.B. Holzapfel, Refinement of the ruby luminescence pressure scale, J. Appl. Phys. 93 (2003) 1813.

[55] K. Kunc, I. Loa, K. Syassen, Diamond under pressure: Ab-initio calculations of the equation of state and optical phonon frequency revisited, High Press. Res. 24 (2004) 101.

[56] A. Dewaele, P. Loubeyre, M. Mezouar, Equations of state of six metals above 94 GPa, Phys. Rev. B 70 (2004) 094112.

[57] A. Dewaele, M. Torrent, P. Loubeyre, M. Mezouar, Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations, Phys. Rev. B 78 (2008) 104112.

[58] A.D. Chijioke, W.J. Nellis, I.F. Silvera, High-pressure equations of state of Al, Cu, Ta, and W, J. Appl. Phys. 98 (2005) 073526.

[59] L. Liu, Y. Bi, J. Xu, Ruby fluorescence pressure scale: revisited, Chin. Phys. B 22 (2013) 056201.

[60] S.D. Jacobsen, C.M. Holl, K.A. Adams, R.A. Fischer, E.S. Martin, et al., Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media, Am. Mineral. 93 (2008) 1823.

[61] Y. Bi, J. Xu, A Corrected Absolute MgO Pressure Scale up to 65 GPa and the Accuracy of Pressure Determination, unpublished, 2011.

[62] S. Sinogeikin, J. Bass, V. Prakapenka, D. Lakshtanov, G. Shen, et al., Brillouin spectrometer interfaced with synchrotron radiation for simultaneous X-ray density and acoustic velocity measurements, Rev. Sci. Instrum. 77 (2006) 103905.

[63] F. Datchi, A. Dewaele, P. Loubeyre, R. Letoullec, Y. LeGodec, et al., Optical pressure sensors for high-pressure-high-temperature studies in a diamond anvil cell, High Press. Res. 27 (2007) 447.

[64] C.S. Zha, W.A. Bassett, Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and Raman scattering, Rev. Sci. Instrum. 74 (2003) 1255.

[65] J. Xu, H.K. Mao, P.M. Bell, Position-sensitive x-ray diffraction: hydrostatic compressibility of argon, tantalum, and copper 769 kbar, High Temperature-High Press. 16 (1984) 495.

[66] J. Xu, E. Huang, J. Lin, L. Xu, Raman study at high pressure and the thermodynamic properties of corundum: application of Kieffer's model, Am. Mineral. 80 (1995) 1157.

[67] L.S. Dubrovinsky, N.A. Dubrovinskaia, T. Le Bihan, Aggregate sound velocities and acoustic Gru¨neisen parameter of iron up to 300 GPa and 1200 K, PNAS 98 (2001) 9484.

[68] T. Kenichi, Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques, J. Appl. Phys. 89 (2001) 662.

[69] R.J. Angel, M. Bujak, J. Zhao, G.D. Gatta, S.D. Jacobsen, Effective hydrostaticity limits pf pressure media for high-pressure crystallographic studies, J. Appl. Crystallogr. 40 (2007) 26.

[70] Q. Jing, Y. Bi, Q. Wu, F. Jing, Z. Wang, et al., Yield strength of molybdenum at high pressures, Rev. Sci. Instrum. 78 (2007) 073906.

[71] A.K. Singh, The lattice strains in specimen (cubic system) compressed nonhydrostatically in an opposed anvil device, J. Appl. Phys. 73 (1993) 4278.

[72] A.K. Singh, C. Balasigh, The lattice strains in a specimen (hexagonal system) compressed nonhydrostatically in an opposed anvil high pressure setup, J. Appl. Phys. 75 (1994) 4956.

[73] A.K. Singh, C. Balasigh, H.K. Mao, R.J. Hemley, J. Shu, Analysis of lattice strains measured under nonhydrostatic pressure, J. Appl. Phys. 83 (1998) 7567.

[74] A.K. Singh, T. Kenichi, Measurement and analysis of nonhydrostatic lattice strain component in niobium to 145 GPa under various fluid pressure-transmitting media, J. Appl. Phys. 90 (2001) 3269.

[75] T. Uchida, N. Funamori, T. Yagi, Lattice strains in crystals under uniaxial stress field, J. Appl. Phys. 80 (1996) 739.

[76] D. He, T.S. Duffy, X-ray diffraction study of the static strength of tungsten to 69 GPa, Phys. Rev. B 73 (2006) 134106.

[77] T.S. Duffy, G. Shen, J. Shu, H.K. Mao, R.J. Hemley, et al., Elasticity, shear strength, and equation of state of molybdenum and gold from xray diffraction under nonhydrostatic compression to 24 GPa, J. Appl. Phys. 86 (1999) 6729.

[78] R.J. Hemley, H.K. Mao, G. Shen, J. Badro, P. Gillet, et al., X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures, Science 276 (1997) 1242.

[79] A.K. Singh, H.K. Mao, J. Shu, R. Hemley, Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron, Phys. Rev. Lett. 80 (1998) 2157.

[80] H.K. Mao, J. Shu, G. Shen, R.J. Hemley, B. Li, et al., Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core, Nature 396 (1998) 741.

[81] A.K. Singh, Analysis of nonhydrostatic high-pressure diffraction data (cubic system): assessment of various assumptions in the theory, J. Appl. Phys. 106 (2009) 043514.

[82] S. Karato, Theory of lattice strain in a material undergoing plastic deformation: Basic formulation and applications to a cubic crystal, Phys. Rev. B 79 (2009) 214106.

[83] P.A. Turner, C.N. Tome, A study of residual-stresses in zircaloy-2 with rod texture, Acta Metall. Mater. 42 (1994) 4143.

[84] B. Clausen, T. Lorentzen, T. Leffers, Self-consistent modeling of the plastic-deformation of fcc polycrystals and its implications for diffraction measurements of internal-stresses, Acta Mater. 46 (1998) 3087.

[85] D.J. Weidner, L. Li, M. Davis, J.H. Chen, Effect of plasticity on elasticmodulus measurements, Geophys. Res. Lett. 31 (2004) 6621.

[86] L. Li, D.J. Weidner, J.H. Chen, M.T. Vaughan, M. Davis, et al., X-ray strain analysis at high pressure: effect of plastic deformation in MgO, J. Appl. Phys. 95 (2004) 8357.

[87] S. Merkel, C. Tome, H.R. Wenk, Modeling analysis of the influence of plasticity on high pressure deformation of hcp. Co, Phys. Rev. B 79 (2009) 064110.

[88] H.K. Mao, J. Badro, J. Shu, R.J. Hemley, A.K. Singh, Strength, anisotropy, and preferred orientation of solid argon at high pressures, J. Phys. Condens. Matter 18 (2006) S963.

[89] E. Menendez-Proupin, A.K. Singh, Ab initio calculations of elastic properties of compressed Pt, Phys. Rev. B 76 (2007) 054117.

[90] K.W. Katahara, M.H. Manghnani, E.S. Fisher, Pressure derivatives of the elastic moduli of bcc titanium-vanadium-chromium, niobium-molybdenum and tantalum-tungsten alloys, J. Phys. F 9 (1979) 773.

[91] L. Liu, H.X. Song, H.Y. Geng, Y. Bi, J. Xu, Compressive behaviors of bcc bismuth up to 55 GPa, Phys. Status Solidi B 250 (2013) 1398.

[92] L. Liu, H.X. Song, Z.G. Wang, H.Y. Geng, Q. Jing, et al., Strength and equation of state of fluorite phase CeO2 under high pressures, J. Appl. Phys. 112 (2012) 013532.

[93] J.I. Langford, X-ray powder diffraction studies of vitromet samples, J. Appl. Crystallogr. 4 (1971) 159.

[94] A.K. Singh, H.P. Liermann, Y. Akahama, H. Kawamura, Aluminum as a pressure-transmitting medium cum pressure standard for X-ray diffraction experiments to 200 GPa with diamond anvil cell, J. Appl. Phys. 101 (2007) 123526.

[95] A.K. Singh, H.P. Liermann, S.K. Saxena, Strength of magnesium oxide under high pressure: evidence for the grain-size dependence, Solid State Commun. 132 (2004) 795.

[96] A.K. Singh, H.P. Liermann, S.K. Saxena, H.K. Mao, U. Devi, Nonhydrostatic compression of gold powder to 60 GPa in a diamond anvil cell: estimation of compressive strength from X-ray diffraction data, J. Phys. Condens. Matter 18 (2006) S969.

[97] A.K. Singh, X-ray diffraction from solids under nonhydrostatic compression-some recent studies, J. Phys. Chem. Solids 65 (2004) 1589.

[98] Z. Wang, S.K. Saxena, V. Pischedda, H.P. Liermann, C.S. Zha, In situ X-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2, Phys. Rev. B 64 (2001) 012102.

[99] L. Gerward, J.S. Olsen, L. Petit, G. Valitheeswaran, V. Kanchana, et al., Bulk modulus of CeO2 and PrO2-an experimental and theoretical study, J. Alloys Compd. 400 (2005) 56.

[100] M.I. Eremets, High Pressure Experimental Methods, Oxford University Press, Oxford, 1996, p. 761.

[101] B. Chen, A.E. Gleason, J.Y. Yan, K.J. Koski, S. Clark, et al., Elasticity, strength, and refractive index of argon at high pressure, Phys. Rev. B 81 (2010) 144110.

[102] H. Marquardt, S. Speziale, A. Gleason, S. Sinogeikin, I. Kantor, et al., Brillouin scattering and X-ray diffraction of solid argon to 65 GPa and 700 K: Shear strength of argon at HP/HT, J. Appl. Phys. 114 (2013) 093517.

Lei Liu, Yan Bi. How far away are accurate equations of state determinations Some issues on pressure scales and non-hydrostaticity in diamond anvil cells[J]. Matter and Radiation at Extremes, 2016, 1(4): 224.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!