量子电子学报, 2017, 34 (5): 513, 网络出版: 2017-10-30  

槠叶种新鲜茶树叶的拉曼光谱检测

Detection of fresh tea leaves of Zhuye by Raman spectroscopy
作者单位
华南师范大学信息光电子科技学院, 广东 广州 510006
摘要
基于激光拉曼光谱技术对新鲜茶叶原叶品质鉴定及产地区分进行了研究,对安徽祁门县六个村庄槠叶种新鲜茶树叶(简称原叶)进行了检测。结果表明不同产地原叶在748, 831, 1005, 1158, 1328, 1527, 1609 cm-1等处均有较强拉曼峰,但每组峰强度存在差异。采用主成分分析法(PCA)及线性判别分析法(LDA)对原叶的拉曼光谱进行了分析,得到不同产地原叶的区分度为70.7%。
Abstract
Based on laser Raman spectroscopy technology, the quality identification of fresh tea leaves and growing region discrimination are investigated. Fresh leaves of Zhuye (the original leaves) of six villages in Qimen County, Anhui, China are detected. Results show that there are strong Raman peaks at 748, 831, 1005, 1158, 1328, 1527, 1609 cm-1 in the original leaves from different regions, but the intensities of peaks are different in each group. Principal component analysis (PCA) and linear discriminant analysis (LDA) are used to analyze Raman spectra of the original leaves, and it’s found that the discrimination index of original leaves from different regions is 70.7%.
参考文献

[1] Ma Guicen, Zhang Yingbin, et al. Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: Taking Dongting Biluochun as an example[J]. Food Control, 2016, 59: 714-720.

[2] Zhang Long, Pan Jiarong, Zhu Cheng. Determination of the geographical origin of Chinese teas based on stable carbon and nitrogen isotope ratios[J]. Journal of Zhejiang University, 2012, 13(10): 824-830.

[3] Ana Marcos, Andrew Fisher, Gerry Rea, et al. Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea[J]. Journal of Managerial Psychology, 1998, 13(6): 521-525.

[4] Zhou Jian, Cheng Hao, He Wei, et al. Identification of geographical indication tea with Fisher’s discriminant classification and principal components analysis[J]. Journal of Near Infrared Spectroscopy, 2009, 17(3): 159-164.

[5] Liang Qifeng, Hou Hongna. Identification of tea varieties by Fourier transform infrared spectroscopy[J]. Guangzhou Chemical Industry (广州化工), 2016, 44(1): 119-120,189 (in Chinese).

[6] Yuan Yuwei, Hu Guixian, Shao Shengzhi, et al. Progress in analytical methods for the detection of geographical origin and authenticity of tea (camellia sinensis)[J]. Journal of Nuclear Agricultural Sciences (核农学报), 2013, 27(4) : 0452-0457 (in Chinese).

[7] Liu Hailong, Wu Xijun, Tian Guangjun. Three-dimensional fluorescence spectroscopy combined with parallerl factor analysis as a complementary technique for green tea charactorization[J]. Chinese J. Lasers (中国激光), 2008, 35(5): 685-689 (in Chinese).

[8] Zhang Zhimin, Chen Shan, Liang Yizeng, et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2010, 41(6): 659-669.

[9] Luo Shuwen, Chen Changshui, Chen Weidong. Early diagnosis of colon cancer using Raman spectroscopy and multivariate statistical analysis techniques[J]. Chinese Journal of Luminescence (发光学报), 2013, 34(11): 1544-1549 (in Chinese).

[10] Jiang Yuling, Liu Junxian, Chen Yue, et al. Screening of caratenoid high-producing mutants from rhodotorula glutinis using Raman spectroscopy in situ quantitative detection technology[J]. Chinese J. Lasers (中国激光), 2014, 41(2): 341-34(in Chinese).

[11] Chen Yongjian, Feng Shangyuan, Guo Xiaolin, et al. Preliminary study on the surface enhanced Raman spectrum of tea[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2012, 32(10): 2702-2705 (in Chinese).

[12] Zhengling, Zhao Yanping, Feng Yadong. Identification of Pu’er ripe teas with different origins and fermantation years by surface-enhanced Raman spectroscopy[J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2013, 33(6): 1575-1580 (in Chinese).

[13] Lu Meihong, Lei Haiying, Wang Zhijun, et al. Fluorescence spectra and Raman spectra of several synthetic food colors[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(1): 12-17 (in Chinese).

[14] Yu Cuirong, Wang Xinquan, Qi Minjun, et al. Application of spectral and spectral imaging technology in biomedicine[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(6): 641-647 (in Chinese).

[15] Abdullah Chandra Sekhar Talart, Zanyar Movasaghi, Shazza Rehman, et al. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2015, 50(1): 46-111.

[16] Ding Yong, Xu Yiding, Wang Yejun, et al. Study on withering and first drying technology at primary processing of Keemun black tea[J]. Chinese Agricultural Science Bulletin (中国农学通报), 2010, 2(9): 110-114 (in Chinese).

[17] Wang Chen. Study on the Influence of Processing Technology and Varity on the Chemical Compositions of Tea (工艺和品种对茶叶化学成分的影响研究)[D]. Kunming: Master Thesis of Kunming University of Science and Technology, 201(in Chinese).

[18] Kang Suyoung. Effects of Tea Cultivar, Growing Season and Processing Method on Volatitles of Tea Leaves (不同茶树品种、生产季节和加工方法 对茶叶挥发性化合物的影响)[D]. Hangzhou: Doctorial Dissertation of Zhejiang University, 201(in Chinese).

[19] Chen Tao. Terahertz spectra identification of biomolecules based on principal component analysis and fuzzy recognition[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2016, 33(4): 392-398 (in Chinese).

[20] Teh Seng Khoon, Zheng Wei, Ho Khek Yu, et al. Near-infrared Raman spectroscopy for optical diagnosis in the stomach: Identification of helicobacter-pylori infection and intestinal metaplasia[J]. Int. J. Cancer, 2010, 12(8): 1920-1927.

陈长水, 师星哲, 李谦, 刘兆伟. 槠叶种新鲜茶树叶的拉曼光谱检测[J]. 量子电子学报, 2017, 34(5): 513. CHEN Changshui, SHI Xingzhe, LI Qian, LIU Zhaowei. Detection of fresh tea leaves of Zhuye by Raman spectroscopy[J]. Chinese Journal of Quantum Electronics, 2017, 34(5): 513.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!