激光与光电子学进展, 2020, 57 (11): 111413, 网络出版: 2020-06-02   

飞秒激光仿生制备超滑表面及其应用 下载: 2440次特邀综述内封面文章

Bioinspired Slippery Surface Fabricated by Femtosecond Laser and its Applications
方瑶 1,2雍佳乐 1,2霍静岚 1,2杨青 1,3,**成扬 1,3梁婕 1,2陈烽 1,2,*
作者单位
1 西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
2 西安交通大学电子与信息工程学院, 陕西省信息光子技术重点实验室, 陕西 西安 710049
3 西安交通大学机械工程学院, 陕西 西安 710049
引用该论文

方瑶, 雍佳乐, 霍静岚, 杨青, 成扬, 梁婕, 陈烽. 飞秒激光仿生制备超滑表面及其应用[J]. 激光与光电子学进展, 2020, 57(11): 111413.

Yao Fang, Jiale Yong, Jinglan Huo, Qing Yang, Yang Cheng, Jie Liang, Feng Chen. Bioinspired Slippery Surface Fabricated by Femtosecond Laser and its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111413.

参考文献

[1] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049-4054.

[2] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182.

[3] Liu M J, Wang S T, Wei Z X, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669.

[4] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.

[5] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.

[6] Li X M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36(8): 1350-1368.

[7] Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6): 621-633.

[8] Wen L P, Tian Y, Jiang L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 2015, 54(11): 3387-3399.

[9] Nakajima A, Fujishima A, Hashimoto K, et al. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate[J]. Advanced Materials, 1999, 11(16): 1365-1368.

[10] Zhang L S, Kwok H, Li X C, et al. Superhydrophobic substrates from off-the-shelf laboratory filter paper: simplified preparation, patterning, and assay application[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39728-39735.

[11] Liu K S, Cao M Y, Fujishima A, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094.

[12] Yang F Y, Zhang H R, Feng H M, et al. Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure[J]. Photonics Research, 2018, 6(2): 77.

[13] Jeevahan J, Chandrasekaran M, Britto Joseph G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250.

[14] Simpson J T, Hunter S R, Aytug T. Superhydrophobic materials and coatings: a review[J]. Reports on Progress in Physics, 2015, 78(8): 086501.

[15] Li J S, Ueda E, Paulssen D, et al. Slippery lubricant-infused surfaces: properties and emerging applications[J]. Advanced Functional Materials, 2019, 29(4): 1802317.

[16] Dong Z Q, Schumann M F, Hokkanen M J, et al. Superoleophobicity: superoleophobic slippery lubricant-infused surfaces: combining two extremes in the same surface[J]. Advanced Materials, 2018, 30(45): 1870338.

[17] Wong T S, Kang S H. Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.

[18] Amini S, Kolle S, Petrone L, et al. Preventing mussel adhesion using lubricant-infused materials[J]. Science, 2017, 357(6352): 668-673.

[19] Wu Q N, Yang C D, Su C, et al. Slippery liquid-attached surface for robust biofouling resistance[J]. ACS Biomaterials Science & Engineering, 2020, 6(1): 358-366.

[20] Sousa M F B, Loureiro H C, Bertran C A. Anti-scaling performance of slippery liquid-infused porous surface (SLIPS) produced onto electrochemically-textured 1020 carbon steel[J]. Surface and Coatings Technology, 2020, 382: 125160.

[21] Guo T Q, Che P D, Heng L P, et al. Slippery surfaces: anisotropic slippery surfaces: electric-driven smart control of a drop's slide[J]. Advanced Materials, 2016, 28(32): 6999-7007.

[22] Zeng X H, Wu D C, Fu R W. Preparation and characterization of petroleum-pitch-based carbon aerogels[J]. Journal of Applied Polymer Science, 2009, 112(1): 309-314.

[23] Kim P, Wong T S, Alvarenga J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577.

[24] Xiao R, Miljkovic N, Enright R, et al. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer[J]. Scientific Reports, 2013, 3(1): 1988.

[25] Huang X Y, Chrisman J D, Zacharia N S. Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers[J]. ACS Macro Letters, 2013, 2(9): 826-829.

[26] Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 2015, 11(46): 8897-8906.

[27] Wu D, Wang J N, Wu S Z, et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 2011, 21(15): 2927-2932.

[28] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 2013, 7(3): 385-407.

[29] Wang J N, Zhang Y L, Liu Y, et al. Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications[J]. Nanoscale, 2015, 7(16): 7101-7114.

[30] Yong J L, Chen F, Yang Q, et al. A review of femtosecond-laser-induced underwater superoleophobic surfaces[J]. Advanced Materials Interfaces, 2018, 5(7): 1701370.

[31] Yong J L, Chen F, Yang Q, et al. Superoleophobic surfaces[J]. Chemical Society Reviews, 2017, 46(14): 4168-4217.

[32] Yong J L, Fang Y, Chen F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155.

[33] Yong J L, Yang Q, Chen F, et al. Reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2015, 2(2): 1400388.

[34] Yong J L, Chen F, Yang Q, et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 2015, 3(20): 10703-10709.

[35] Yong J L, Chen F, Yang Q, et al. Femtosecond laser controlling underwater oil-adhesion of glass surface[J]. Applied Physics A, 2015, 119(3): 837-844.

[36] Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2014, 2(15): 5499-5507.

[37] Liu Y Q, Zhang Y L, Fu X Y, et al. Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20930-20936.

[38] Wang J N, Shao R Q, Zhang Y L, et al. Biomimetic graphene surfaces with superhydrophobicity and iridescence[J]. Chemistry-an Asian Journal, 2012, 7(2): 301-304.

[39] Yin K, Chu D K, Dong X R, et al. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil-water separation[J]. Nanoscale, 2017, 9(37): 14229-14235.

[40] Fang Y, Yong J L, Chen F, et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 2016, 122(9): 827.

[41] Liu Y Q, Jiao Z Z, Zhang Y L, et al. Kraft mesh origami for efficient oil-water separation[J]. Langmuir, 2019, 35(3): 815-823.

[42] 潘瑞, 钟敏霖. 超快激光制备超疏水超亲水表面及超疏水表面机械耐久性[J]. 科学通报, 2019, 64(12): 1268-1289.

    Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 2019, 64(12): 1268-1289.

[43] 张径舟, 陈烽, 雍佳乐, 等. 飞秒激光诱导仿生超疏水材料表面的研究进展[J]. 激光与光电子学进展, 2018, 55(11): 110001.

    Zhang J Z, Chen F, Yong J L, et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001.

[44] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication[J]. Applied Physics Reviews, 2014, 1(4): 041303.

[45] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B, 1996, 53(4): 1749-1761.

[46] Li Q, Wu Q, Li Y N, et al. Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating[J]. Photonics Research, 2018, 6(8): 789.

[47] von der Linde D, Sokolowski-Tinten K, Bialkowski J. Laser-solid interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, 109: 1-10.

[48] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697-698.

[49] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225.

[50] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications[J]. Nanoscale, 2017, 9(10): 3338-3366.

[51] Babu D J, Mail M, Barthlott W, et al. Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water (salvinia effect)[J]. Advanced Materials Interfaces, 2017, 4(13): 1700273.

[52] Yoo J H, Kwon H J, Paeng D, et al. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal[J]. Nanotechnology, 2016, 27(14): 145604.

[53] Xu Z G, Zhao Y, Wang H X, et al. Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5661-5667.

[54] Xue C H, Li Y R, Hou J L, et al. Self-roughened superhydrophobic coatings for continuous oil-water separation[J]. Journal of Materials Chemistry A, 2015, 3(19): 10248-10253.

[55] Li J, Long Y F, Xu C C, et al. Continuous, high-flux and efficient oil/water separation assisted by an integrated system with opposite wettability[J]. Applied Surface Science, 2018, 433: 374-380.

[56] Chen F, Zhang D S, Yang Q, et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 2011, 27(1): 359-365.

[57] Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917-4919.

[58] Zhang D S, Chen F, Yang Q, et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser[J]. Soft Matter, 2011, 7(18): 8337.

[59] Yong J L, Yang Q, Chen F, et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 2013, 111(1): 243-249.

[60] Vorobyev A Y, Guo C L. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 2015, 117(3): 033103.

[61] Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. The Journal of Physical Chemistry C, 2013, 117(47): 24907-24912.

[62] Yong J L, Chen F, Yang Q, et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 2013, 29(10): 3274-3279.

[63] Lu Y, Yu L D, Zhang Z, et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Advances, 2017, 7(18): 11170-11179.

[64] Fang Y, Yong J L, Chen F, et al. Anisotropic superhydrophobicity: bioinspired fabrication of Bi/tridirectionally anisotropic sliding superhydrophobic PDMS surfaces by femtosecond laser[J]. Advanced Materials Interfaces, 2018, 5(6): 1870024.

[65] Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 2015, 51(48): 9813-9816.

[66] Zhang J Z, Yong J L, Yang Q, et al. Femtosecond laser-induced underwater superoleophobic surfaces with reversible pH-responsive wettability[J]. Langmuir, 2019, 35(9): 3295-3301.

[67] Bai X, Yang Q, Fang Y, et al. Superhydrophobicity-memory surfaces prepared by a femtosecond laser[J]. Chemical Engineering Journal, 2020, 383: 123143.

[68] Yong J L, Chen F, Yang Q, et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2014, 2(23): 8790-8795.

[69] Yong J L, Chen F, Yang Q, et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces[J]. Journal of Materials Chemistry A, 2015, 3(18): 9379-9384.

[70] Huo J L, Yang Q, Chen F, et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 2017, 33(15): 3659-3665.

[71] Yong J L, Chen F, Yang Q, et al. Controllable underwater anisotropic oil-wetting[J]. Applied Physics Letters, 2014, 105(7): 071608.

[72] Cheng Y, Yang Q, Fang Y, et al. Underwater superoleophobic tracks: underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces, 2019, 6(10): 1970066.

[73] Li G Q, Zhang Z, Wu P C, et al. One-step facile fabrication of controllable microcone and micromolar silicon arrays with tunable wettability by liquid-assisted femtosecond laser irradiation[J]. RSC Advances, 2016, 6(44): 37463-37471.

[74] Yong J L, Chen F, Li M J, et al. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces[J]. Journal of Materials Chemistry A, 2017, 5(48): 25249-25257.

[75] Tuteja A, Choi W, Ma M, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622.

[76] Pendurthi A, Movafaghi S, Wang W, et al. Fabrication of nanostructured omniphobic and superomniphobic surfaces with inexpensive CO2 laser engraver[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 25656-25661.

[77] Liu T, Kim C J. Turning a surface superrepellent even to completely wetting liquids[J]. Science, 2014, 346(6213): 1096-1100.

[78] Tuteja A, Choi W, Mabry J M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18200-18205.

[79] Chen H W, Zhang P F, Zhang L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597): 85-89.

[80] Yu C M, Zhu X B, Li K, et al. Manipulating bubbles in aqueous environment via a lubricant-infused slippery surface[J]. Advanced Functional Materials, 2017, 27(29): 1701605.

[81] Irajizad P, Ray S, Farokhnia N, et al. Remote droplet manipulation on self-healing thermally activated magnetic slippery surfaces[J]. Advanced Materials Interfaces, 2017, 4(12): 1700009.

[82] Yong J L, Huo J L, Yang Q, et al. Porous network microstructures: femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 2018, 5(7): 1870029.

[83] Yong J L, Chen F, Yang Q, et al. Liquid repellence: nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 2017, 4(20): 1700552.

[84] Jiao Y L, Lv X, Zhang Y Y, et al. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture[J]. Nanoscale, 2019, 11(3): 1370-1378.

[85] Lv X, Jiao Y L, Wu S Z, et al. Anisotropic sliding of underwater bubbles on microgrooved slippery surfaces by one-step femtosecond laser scanning[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20574-20580.

[86] Wang P, Lu Z, Zhang D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrierto corrosion induced by sulfate reducing bacteria[J]. Corrosion Science, 2015, 93: 159-166.

[87] Manna U, Raman N, Welsh M A, et al. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach[J]. Advanced Functional Materials, 2016, 26(21): 3599-3611.

[88] Luo J, Geraldi N, Guan J, et al. Slippery liquid-infused porous surfaces and droplet transportation by surface acoustic waves[J]. Physical Review Applied, 2017, 7(1): 014017.

[89] Zhou X, Lee Y Y. Chong K S L, et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance[J]. Journal of Materials Chemistry B, 2018, 6(3): 440-448.

[90] Juuti P, Haapanen J, Stenroos C, et al. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate[J]. Applied Physics Letters, 2017, 110(16): 161603.

[91] Xiao L L, Li J S, Mieszkin S, et al. Slippery liquid-infused porous surfaces showing marine antibiofouling properties[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10074-10080.

[92] Epstein A K, Wong T S, Belisle R A, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13182-13187.

[93] Li J S, Kleintschek T, Rieder A, et al. Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications[J]. ACS Applied Materials & Interfaces, 2013, 5(14): 6704-6711.

[94] Zouaghi S, Six T, Bellayer S, et al. Antifouling biomimetic liquid-infused stainless steel: application to dairy industrial processing[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26565-26573.

[95] Subramanyam S B, Rykaczewski K, Varanasi K K. Ice adhesion on lubricant-impregnated textured surfaces[J]. Langmuir, 2013, 29(44): 13414-13418.

[96] Wilson P W, Lu W Z, Xu H J, et al. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS)[J]. Physical Chemistry Chemical Physics, 2013, 15(2): 581-585.

[97] Manna U, Lynn D M. Fabrication of liquid-infused surfaces using reactive polymer multilayers: principles for manipulating the behaviors and mobilities of aqueous fluids on slippery liquid interfaces[J]. Advanced Materials, 2015, 27(19): 3007-3012.

[98] Wu S Z, Zhou L L, Chen C, et al. Photothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell culture[J]. Langmuir, 2019, 35(43): 13915-13922.

方瑶, 雍佳乐, 霍静岚, 杨青, 成扬, 梁婕, 陈烽. 飞秒激光仿生制备超滑表面及其应用[J]. 激光与光电子学进展, 2020, 57(11): 111413. Yao Fang, Jiale Yong, Jinglan Huo, Qing Yang, Yang Cheng, Jie Liang, Feng Chen. Bioinspired Slippery Surface Fabricated by Femtosecond Laser and its Applications[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111413.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!