强激光与粒子束, 2018, 30 (12): 126003, 网络出版: 2019-01-18  

基于不连续因子的沸水堆芯三维瞬态数值模拟

Three-dimensional boiling water reactor core transient simulation based on discontinuity factor
作者单位
1 华北电力大学 控制与计算机工程学院, 河北 保定 071003
2 保定华仿科技股份有限公司, 河北 保定 071051
3 河北大学 电子信息工程学院, 河北 保定 071002
摘要
基于不连续因子校正的粗网格有限差分法是实现堆芯瞬态三维数值模拟的高效方法之一, 粗网节块的界面不连续因子与边界反照率的计算方法决定了实时数值模拟过程中的精度。在计算不连续因子的过程中, 省去了细网节块计算与粗网均匀化过程, 直接在粗网格划分情况下, 基于节块展开法和非线性迭代策略, 推导了粗网格界面不连续因子比率与边界反照率的计算公式, 并编制了相应的计算程序。沸水堆典型算例的三维瞬态模拟证实该方法可在空间域和时间域两方面, 使静态、瞬态精度均达到与先进节块法相等同的程度, 并且计算效率优于先进节块法, 为核电站全范围模拟机三维堆芯的实时仿真模型开发提供了一种切实可行的选择。
Abstract
The coarse mesh finite difference method with discontinuity factor correction is one of the effective methods to realize the core transient three-dimensional numerical simulation. The calculation method of coarse mesh interface discontinuity factor and the boundary albedo determines the precision in the process of real-time simulation. In the process of calculation of discontinuity factor and boundary albedo, the fine cell calculation and coarse mesh homogenization process is eliminated. Directly under the condition of the coarse cell, based on the nodal expansion method and nonlinear iterative strategy, coarse cell interface discontinuity factor ratio and boundary albedo are deduced. The corresponding calculation programs are developed. From a typical boiling water reactor 3D transient simulation benchmark, the method is proven to be available. The static and transient precisions both in space domain and time domain, are equivalent with that of the advanced nodal method, and the computational efficiency is superior to that of the advanced nodal method. This method provides a feasible choice for the development of full scope simulator of transient calculation of three-dimensional core model.
参考文献

[1] 郑友琦,Lee Deokjung.基于非线性迭代的压水堆瞬态计算程序开发[J].强激光与粒子束, 2017, 29: 036001.(Zheng Youqi, Lee Deokjung. Nodal code development for pressurized water reactor transient analysis based on non-linear iteration method. 2017, 29: 036001)

[2] Janosy J S, Kereszturi A, Hazi G, et al. Real-time 3D simulation of a pressurized water nuclear reactor[C]//International Conference on Computer Modelling and Simulation. 2010: 414-419.

[3] Georgieva E, Dinkov Y, Ivanov K, et al. Benchmarking the NEM real-time core model for VVER-1000 simulator application: Asymmetric core[C]//ASME 24th International Conference on Nuclear Engineering. 2016.

[4] Masashi T, Tatsuya I, Moore B. Development of kinetics model for BWR core simulator AETNA[J]. Journal of Nuclear Science & Technology, 2003, 40(4): 201-212.

[5] Smith K S. Spatial homogenization methods for light water reactor analysis[D]. Massachusetts: Massachusetts Institute of Technology, 1980: 12-90.

[6] Tatsuya I, Munenari Y. Advanced nodal methods of the few-group BWR core simulator NEREUS[J]. Journal of Nuclear Science & Technology, 1999, 36(11): 996-1008.

[7] 郭炯,李富.不连续因子计算强吸收体区域的改进[J].原子能科学技术, 2013, 47(s1): 33-37.(Guo Jiong, Li Fu. Improvement of discontinuous factor for strong absorber region. Atomic Energy Science and Technology, 2013, 47(s1): 33-37)

[8] 吕栋,俞陆林,韩宇,等.处理轴向三维非均匀效应的单组件均匀化模型[J].核动力工程, 2014(s2): 140-142.(Lü Dong, Yu Lulin, Han Yu, et al. Single assembly pin-by-pin homogenization model for handling axial 3D heterogeneity effect. Nuclear Power Engineering, 2014(s2): 140-142)

[9] Bernal A, Roman J E, Miró R, et al. Assembly discontinuity factors for the neutron diffusion equation discretized with the finite volume method. Application to BWR[J]. Annals of Nuclear Energy, 2016, 97: 76-85.

[10] Vidal-Ferrndiz A, Gonzlez-Pintor S, Ginestar D, et al. Use of discontinuity factors in high-order finite element methods[J]. Annals of Nuclear Energy, 2016, 87: 728-738.

[11] Zimin V G, Ninokata H. Nodal neutron kinetics model based on nonlinear iteration procedure for LWR analysis[J]. Annals of Nuclear Energy, 1998, 25(8): 507-528.

[12] Singh T, Mazumdar T, Pandey P. NEMSQR: A 3-D multi group diffusion theory code based on nodal expansion method for square geometry[J]. Annals of Nuclear Energy, 2014, 64: 230-243.

段新会, 姜萍, 王兵树. 基于不连续因子的沸水堆芯三维瞬态数值模拟[J]. 强激光与粒子束, 2018, 30(12): 126003. Duan Xinhui, Jiang Ping, Wang Bingshu. Three-dimensional boiling water reactor core transient simulation based on discontinuity factor[J]. High Power Laser and Particle Beams, 2018, 30(12): 126003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!