Photonics Research, 2018, 6 (7): 07000686, Published Online: Jul. 4, 2018  

Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature Download: 720次

Author Affiliations
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 e-mail: huangqz@mail.hust.edu.cn
3 e-mail: jsxia@hust.edu.cn
Copy Citation Text

Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 07000686.

References

[1] PavesiL.LockwoodD. J., Silicon Photonics (Springer-Verlag, 2004).

[2] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 2006, 12: 1678-1687.

[3] L. Thyleén, L. Wosinski. Integrated photonics in the 21st century. Photon. Res., 2014, 2: 75-81.

[4] Q. Huang, X. Zhang, J. Xia, J. Yu. Dual-band optical filter based on a single microdisk resonator. Opt. Lett., 2011, 36: 4494-4496.

[5] Q. Huang, Q. Liu, J. Xia. Traveling wave-like Fabry–Perot resonator-based add-drop filters. Opt. Lett., 2017, 42: 5158-5161.

[6] S. Chen, Y. Shi, S. He, D. Dai. Compact monolithically-integrated hybrid (de)multiplexer based on silicon-on-insulator nanowires for PDM-WDM systems. Opt. Express, 2015, 23: 12840-12849.

[7] Y. Li, Y. Zhang, L. Zhang, A. W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [invited]. Photon. Res., 2015, 3: B10-B27.

[8] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34: 149-154.

[9] Q. Deng, X. Li, Z. Zhou, H. Yi. Athermal scheme based on resonance splitting for silicon-on-insulator microring resonators. Photon. Res., 2014, 2: 71-74.

[10] Q. Huang, K. Jie, Q. Liu, Y. Huang, Y. Wang, J. Xia. Ultra-compact, broadband tunable optical bandstop filters based on a multimode one-dimensional photonic crystal waveguide. Opt. Express, 2016, 24: 20542-20553.

[11] S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, M. Lipson. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Opt. Lett., 2008, 33: 2185-2187.

[12] H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, J. Van Campenhout. Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide. IEEE Photon. Technol. Lett., 2013, 25: 159-162.

[13] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 2015, 528: 534-538.

[14] L. Lu, L. Zhou, X. Sun, J. Xie, Z. Zou, H. Zhu, X. Li, J. Chen. CMOS-compatible temperature-independent tunable silicon optical lattice filters. Opt. Express, 2013, 21: 9447-9456.

[15] J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, R. Baets. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express, 2009, 17: 14627-14633.

[16] B. Guha, J. Cardenas, M. Lipson. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express, 2013, 21: 26557-26563.

[17] M. Uenuma, T. Moooka. Temperature-independent silicon waveguide optical filter. Opt. Lett., 2009, 34: 599-601.

[18] Z. Zhou, B. Yin, Q. Deng, X. Li, J. Cui. Lowering the energy consumption in silicon photonic devices and systems [invited]. Photon. Res., 2015, 3: B28-B46.

[19] B. Guha, A. Gondarenko, M. Lipson. Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers. Opt. Express, 2010, 18: 1879-1887.

[20] Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, Z. Zhou. Athermal and flat-topped silicon Mach–Zehnder filters. Opt. Express, 2016, 24: 29577-29582.

[21] T. Hiraki, H. Fukuda, K. Yamada, T. Yamamoto. Small sensitivity to temperature variations of Si-photonic Mach–Zehnder interferometer using Si and SiN waveguides. Front. Mater., 2015, 2: 1-5.

[22] S. Dwivedi, H. D’heer, W. Bogaerts. Maximizing fabrication and thermal tolerances of all-silicon FIR wavelength filters. IEEE Photon. Technol. Lett., 2015, 27: 871-874.

[23] P. Xing, J. Viegas. Broadband CMOS-compatible SOI temperature insensitive Mach–Zehnder interferometer. Opt. Express, 2015, 23: 24098-24107.

[24] H. Yang, J. Zhang, Y. Zhu, X. Zhou, S. He, L. Liu. Ultra-compact and temperature-insensitive Mach–Zehnder interferometer based on one multimode waveguide on silicon. Opt. Lett., 2017, 42: 615-618.

[25] K. Hassan, C. Sciancalepore, J. Harduin, T. Ferrotti, S. Menezo, B. B. Bakir. Toward athermal silicon-on-insulator (de)multiplexers in the O-band. Opt. Lett., 2015, 40: 2641-2644.

[26] A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, R. Baets. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol., 2017, 35: 639-649.

[27] A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, R. Baets. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited]. Photon. Res., 2015, 3: B47-B59.

[28] A. Arbabi, L. L. Goddard. Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances. Opt. Lett., 2013, 38: 3878-3881.

[29] D. Dai, Z. Wang, J. F. Bauters, M. C. Tien, M. J. Heck, D. J. Blumenthal, J. E. Bowers. Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. Opt. Express, 2011, 19: 14130-14136.

[30] G. Gao, D. Chen, S. Tao, Y. Zhang, S. Zhu, X. Xiao, J. Xia. Silicon nitride O-band (de) multiplexers with low thermal sensitivity. Opt. Express, 2017, 25: 12260-12267.

[31] X. Tu, J. F. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. B. Yu, G. Q. Lo. Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity. Opt. Express, 2012, 20: 2640-2648.

[32] Y. Huang, J. Song, X. Luo, T.-Y. Liow, G.-Q. Lo. CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration. Opt. Express, 2014, 22: 21859-21865.

[33] W. Sacher, Y. Huang, G. Lo, J. Poon. Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightwave Technol., 2015, 33: 901-910.

[34] N. Sherwood-Droz, M. Lipson. Scalable 3D dense integration of photonics on bulk silicon. Opt. Express, 2011, 19: 17758-17765.

[35] Z. Zhang, B. Huang, X. Zhang, Z. Zhang, C. Cheng, X. Mao, S. Liu, H. Chen. Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process. IEEE Photon. Technol. Lett., 2015, 27: 1543-1546.

[36] T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, F. Y. Gardes. Athermal silicon nitride angled MMI wavelength division (de)multiplexers for the near-infrared. Opt. Express, 2017, 25: 27310-27320.

[37] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, B. J. Offrein. Cascaded Mach–Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 2013, 21: 11652-11658.

[38] V. Raghunathan, T. Izuhara, J. Michel, L. C. Kimerling. Stability of polymer-dielectric bi-layers for athermal silicon photonics. Opt. Express, 2012, 20: 16059-16066.

[39] J.-M. Lee, M.-S. Kim, M. Fournier, P. Labeye, C. J. Oton, F. Testa. Postfabrication trimming of CMOS-compatible athermal MZI by thermal annealing. J. Lightwave Technol., 2016, 34: 1288-1292.

[40] J. Z. Huang, R. Scarmozzino, R. M. Osgood. A new design approach to large input/output number multimode interference couplers and its application to low-crosstalk WDM routers. IEEE Photon. Technol. Lett., 1998, 10: 1292-1294.

Shiqi Tao, Qingzhong Huang, Liangqiu Zhu, Jun Liu, Yinglu Zhang, Ying Huang, Yi Wang, Jinsong Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature[J]. Photonics Research, 2018, 6(7): 07000686.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!