激光与光电子学进展, 2018, 55 (7): 071601, 网络出版: 2018-07-20   

金纳米颗粒对量子点荧光自发辐射的影响 下载: 1065次

Effect of Gold Nanoparticles on Fluorescence Spontaneous Emission of Quantum Dots
作者单位
1 南开大学电子信息与光学工程学院现代光学研究所光学信息技术科学教育部重点实验室, 天津 300350
2 天津大学精密仪器与光电子工程学院精密测试技术及仪器国家重点实验室, 天津 300072
摘要
基于时间相关单光子计数技术,研究了金纳米颗粒对CdSe/ZnS量子点荧光自发辐射的影响。制备了与金纳米颗粒有效耦合的量子点样品,测量了高浓度量子点样品的荧光寿命,发现金纳米颗粒能够显著降低量子点的荧光寿命。研究了单量子点的荧光特性,发现单量子点与金纳米颗粒耦合时,荧光寿命降低到无金纳米颗粒时的1%左右。通过数值计算,研究了量子点偏振方向,量子点与金纳米颗粒间的距离,以及金纳米颗粒直径等参数对量子点荧光自发辐射速率的影响。
Abstract
The effect of gold nanoparticles on the fluorescence spontaneous emission of CdSe/ZnS quantum dots (QDs) is investigated based on the time-correlated single photon counting technique. The quantum dot samples coupled with gold nanoparticles effectively are prepared. The fluorescence lifetime of QDs with a high concentration is measured, and it is found that the fluorescence lifetime of QDs can be significantly reduced by the gold nanoparticles. The fluorescence properties of a single QD are also studied and it is found that the fluorescence lifetime of the quantum dot coupled with gold nanoparticles is reduced to about one percent of that without gold nanoparticles. The effects of the polarization direction of QDs, the distance between the QDs and the gold nanoparticles, the diameters of gold nanoparticles and other parameters on the fluorescence spontaneous emission rate of QDs are investigated by the numerical calculation.
参考文献

[1] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.

[2] Baba K, Nishida K. Single-molecule tracking in living cells using single quantum dot applications[J]. Theranostics, 2012, 2(7): 655-667.

[3] 朱小妹, 王晓梅, 冯刚, 等. 量子点偶联 RGD 用于喉癌血管的靶向活体成像[J]. 中国激光, 2014, 41(5): 0504002.

    Zhu X M, Wang X M, Feng G, et al. Quantum dot conjugated RGD for targeted in vivo imaging of laryngocarcinoma vessel[J]. Chinese Journal of Lasers, 2014, 41(5): 0504002.

[4] Lent C S, Isaksen B, Lieberman M. Molecular quantum-dot cellular automata[J]. Journal of the American Chemical Society, 2003, 125(4): 1056-1063.

[5] Lidke K A, Rieger B, Jovin T M, et al. Superresolution by localization of quantum dots using blinking statistics[J]. Optics Express, 2005, 13(18): 7052-7062.

[6] Antelman J, Wilking-Chang C, Weiss S, et al. Nanometer distance measurements between multicolor quantum dots[J]. Nano Letters, 2009, 9(5): 2199-2205.

[7] 陈雯柏, 马航, 叶继兴, 等. 量子点显示器件研究进展[J]. 激光与光电子学进展, 2017, 54(11): 110003.

    Chen W B, Ma H, Ye J X, et al. Research progress on quantum dot light emitting diodes[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110003.

[8] 王红培, 王广龙, 邱鹏, 等. 量子点场效应晶体管单光子探测器的设计与特性分析[J]. 中国激光, 2013, 40(1): 0118001.

    Wang H P, Wang G L, Qiu P, et al. Design and characteristics analysis of single photon detector based on quantum-dot field effect transistor[J]. Chinese Journal of Lasers, 2013, 40(1): 0118001.

[9] Qasim K, Lei W, Li Q. Quantum dots for light emitting diodes[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3173-3185.

[10] 谭华, 倪朕伊, 皮孝东, 等. 硅量子点在光电器件中的应用研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030006.

    Tan H, Ni Z Y, Pi X D, et al. Research progress in application of silicon quantum dots in optoelectronic devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030006.

[11] 杨文华, 王海龙, 王兆翔, 等. 量子点半导体光放大器的波长转换效率[J]. 光学学报, 2017, 37(4): 0406005.

    Yang W H, Wang H L, Wang Z X, et al. Wavelength conversion efficiency of quantum dot semiconductor optical amplifier[J]. Acta Optica Sinica, 2017, 37(4): 0406005.

[12] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[13] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

[14] Liu Z, Li E, Shalaev V M, et al. Near field enhancement in silver nanoantenna-superlens systems[J]. Applied Physics Letters, 2012, 101(2): 021109.

[15] 黄海涛, 李敏, 金琳, 等. 金纳米棒饱和吸收体1 μm被动调Q固体激光器[J]. 中国激光, 2017, 44(7): 0703021.

    Huang H T, Li M, Jin L, et al. Passively Q-switched solid-state laser using gold nanorod as saturable absorber[J]. Chinese Journal of Lasers, 2017, 44(7): 0703021.

[16] Li M, Cushing S K, Liang H, et al. Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA[J]. Analytical Chemistry, 2013, 85(4): 2072-2078.

[17] Mosier-Boss P A. Review of SERS substrates for chemical sensing[J]. Nanomaterials, 2017, 7(6): 142.

[18] Shi S, Atay T, Urabe H, et al. Large enhancement of fluorescence from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons[J]. Nano Letters, 2005, 5(8): 1557-1561.

[19] Alexandre G B, Shing C K, Matthew D C, et al. Surface plasmon 傆bquantum dot coupling from arrays of nanoholes[J]. Journal of Physical Chemistry B, 2006, 110(16): 8307-8313.

[20] Munechika K, Chen Y, Tillack A F, et al. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms[J]. Nano Letters, 2010, 10(7): 2598-2603.

[21] Ratchford D, Shafiei F, Kim S, et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 2011, 11(3): 1049-1054.

[22] Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: A single-molecule fluorescence study[J]. Journal of the American Chemical Society, 2006, 128(28): 8998-8999.

[23] Belacel C, Habert B, Bigourdan F, et al. Controlling spontaneous emission with plasmonic optical patch antennas[J]. Nano Letters, 2013, 13(4): 1516-1521.

[24] Hoang T B, Akselrod G M, Argyropoulos C, et al. Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 2015, 6: 7788.

[25] Yuan C T, Yu P, Ko H C, et al. Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots[J]. Acs Nano, 2009, 3(10): 3051-3056.

[26] Pfeiffer M, Lindfors K, Wolpert C, et al. Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna[J]. Nano Letters, 2010, 10(11): 4555-4558.

[27] Kinkhabwala A A, Mullen K, Fan S, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 2009, 3(11): 654-657.

[28] Kummar S, Ciesielski T E, Fogarasi M C. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods[J]. Acs Nano, 2014, 8(5): 4440-4449.

[29] Yi M, Zhang D, Wen X, et al. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film[J]. Plasmonics, 2011, 6(2): 213-217.

[30] Qin A J, Zhang Y, Han N, et al. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics[J]. Science China Chemistry, 2012, 55(5): 772-778.

[31] Thomas S W, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chemical Reviews, 2007, 107 (4): 1339-1386.

[32] Singhal A, Skandan G, Wang A, et al. On nanoparticle aggregation during vapor phase synthesis[J]. Nanostructured Materials, 1999, 11(4): 545-552.

[33] Subero J, Ning Z, Ghadiri M, et al. Effect of interface energy on the impact strength of agglomerates[J]. Powder Technology, 1999, 105(1/2/3): 66-73.

[34] Ming T, Kou X, Chen H, et al. Ordered gold nanostructure assemblies formed by droplet evaporation[J]. Angewandte Chemie, 2008, 47(50): 9685-9690.

[35] 刘超, 周燕, 王新伟, 等. 荧光寿命成像技术及其研究进展[J]. 激光与光电子学进展, 2011, 48(11): 111102.

    Liu C, Zhou Y, Wang X W, et al. Fluorescence lifetime imaging microscopy and its research progress[J]. Laser & Optoelectronics Progress, 2011, 48(11): 111102.

[36] Muskens O L, Giannini V, Sanchez-Gil J A, et al. Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas[J]. Nano Letters, 2007, 7(9): 2871-2875.

[37] Akselrod G M, Argyropoulos C, Hoang T B, et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 2014, 8(11): 835-840.

[38] Galland C, Ghosh Y, Steinbrueck A, et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots[J]. Nature, 2011, 479(7372): 203-207.

[39] Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 2015, 5: 8456.

[40] Sauvan C, Hugonin J P, Maksymov I S, et al. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators[J]. Physical Review Letters, 2013, 110(23): 237401.

[41] Jia H W, Yang F, Zhong Y, et al. Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas[J]. Photonics Research, 2016, 4(6): 293-305.

万佳宁, 林雨, 钟莹, 刘海涛. 金纳米颗粒对量子点荧光自发辐射的影响[J]. 激光与光电子学进展, 2018, 55(7): 071601. Wan Jianing, Lin Yu, Zhong Ying, Liu Haitao. Effect of Gold Nanoparticles on Fluorescence Spontaneous Emission of Quantum Dots[J]. Laser & Optoelectronics Progress, 2018, 55(7): 071601.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!