激光与光电子学进展, 2017, 54 (8): 080201, 网络出版: 2017-08-02   

椭圆偏振强激光场中Mg原子的非次序双电离

Non-Sequential Double Ionization of Magnesium Atom in Elliptically Polarized Strong Laser Field
作者单位
上海大学理学院, 上海 200444
摘要
采用经典系综模型研究了椭圆偏振强激光场中Mg原子的非次序双电离。Mg原子在椭圆偏振强激光场中存在非次序双电离, 且非次序双电离的电离率随着椭圆率的增大而降低, 但降低的幅度不大。通过轨迹回溯分析可以发现, 随着椭圆率增大, 返回重碰撞电子数量的减少使得Mg原子非次序双电离的电离率降低。另外, 两电子横向相关动量分布及不同能量的电子数量分布表明, 返回电子的能量随着激光场椭圆率的增大而增大, 使得第2个电子在返回电子的少次甚至一次重碰撞下即可电离, 这在一定程度上补偿了降低的电离率, 从而使电离率降低得不明显。
Abstract
The non-sequential double ionization of magnesium atom in elliptically polarized strong laser field is investigated with the classical ensemble method. The non-sequential double ionization occurs in elliptically polarized strong laser field for magnesium atom, and the ionization rate decreases a little with the increase of ellipticity. Back analysis of the non-sequential double ionization trajectories shows that the decrease of the number of returning electrons results in the decrease of ionization rate. In addition, the distributions of the correlated two-electron transverse momentum and counts of electron with different energies demonstrate the kinetic energy of ionized electrons rises with the increase of ellipticity, so the second electron can be ionized easily with the recollision of the returning electron, which can compensate the reduced ionization rate, and thus the ionization rate does not decrease too much.
参考文献

[1] 于晓晨, 胡家升, 王连宝. 基于液晶空间光调制器的激光束整形[J]. 光学学报, 2012, 32(5): 0514001.

    Yu Xiaochen, Hu Jiasheng, Wang Lianbao. Laser beam shaping based on liquid-crystal spatial light modulato[J]. Acta Optica Sinica, 2012, 32(5): 0514001.

[2] 奚 坤, 丁双红, 张 骏, 等. 1064 nm纳秒激光脉冲激发的外腔式PbWO4拉曼激光器[J]. 光学学报, 2012, 32(9): 0914003.

    Xi Kun, Ding Shuanghong, Zhang Jun, et al. External resonator PbWO4 Raman laser excited by 1064 nm nanosecond laser pulses[J]. Acta Optica Sinica, 2012, 32(9): 0914003.

[3] 赵智刚, 董延涛, 潘孙强, 等. 50 W量级双端抽运Nd∶YVO4基模固体激光振荡器[J]. 中国激光, 2011, 38(9): 0902001.

    Zhao Zhigang, Dong Yantao, Pan Sunqiang, et al. 50 W class double-end-pumped Nd∶YVO4 TEM00 mode solid state laser oscillator[J]. Chinese J Lasers, 2011, 38(9): 0902001.

[4] Walker B, Sheehy B, Dimauro D F, et al. Precision measurement of strong field double ionization of helium[J]. Physical Review Letters, 1994, 73(9): 1227-1230.

[5] Ruiz C, Plaja L, Roso L, et al. Ab initio calculation of the double ionization of helium in a few-cycle laser pulse beyond the one-dimensional approximation[J]. Physical Review Letters, 2006, 96(5): 053001.

[6] Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 2007, 3: 381-387.

[7] Rudenko A, de Jesus V L B, Ergler T, et al. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm[J]. Physical Review Letters, 2007, 99(26): 263003.

[8] Tate J, Auguste T, Muller H G, et al. Scaling of wave-packet dynamics in an intense midinfrared field[J]. Physical Review Letters, 2007, 98(1): 013901.

[9] Becker W, Liu X, Ho P J, et al. Theories of photoelectron correlation in laser-driven multiple atomic ionization[J]. Reviews of Modern Physics, 2012, 84(3): 1011-1043.

[10] Bergues B, Kubel M, Johnsonet G N, et al. Attosecond tracing of correlated electron-emission in non-sequential double ionization[J]. Nature Communications, 2012, 3: 813.

[11] Liu Y Q, Tschuch S, Rudenko A, et al. Strong-field bouble ionization of Ar below the recollision threshold[J]. Physical Review Letters, 2008, 101(5): 053001.

[12] Kraus P M, Mignolet B, Baykusheva D, et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene[J]. Science, 2015, 350(6262): 790-793.

[13] Hu S X. Boosting photoabsorption by attosecond control of electron correlation[J]. Physical Review Letters, 2013, 111(12): 123003.

[14] Hogle C W, Tong X M, Martin L, et al. Attosecond coherent control of single and double photoionization in argon[J]. Physical Review Letters, 2015, 115(17): 173004.

[15] Ye D, Li M, Fu L B, et al. Scaling laws of the two-electron sum-energy spectrum in strong-field double ionization[J]. Physical Review Letters, 2015, 115(12): 123001.

[16] Pfeiffer A N, Cirelli C, Smolarski M, et al. Timing the release in sequential double ionization[J]. Nature Physics, 2011, 7: 428-433.

[17] Zhou Y M, Huang C, Liao Q, et al. Classical simulations including electron correlations for sequential double ionization[J]. Physical Review Letters, 2012, 109(5): 053004.

[18] Gong X C, Song Q Y, Ji Q Y, et al. Channel-resolved above-threshold double ionization of acetylene[J]. Physical Review Letters, 2015, 114(16): 163001.

[19] Zhang Z L, Zhang J T, Bai L H, et al. Transition of correlated-electron emission in nonsequential dobule ionization of Ar atoms[J]. Optics Express, 2015, 23(6): 7044-7052.

[20] Dong S S, Zhang Z L, Bai L H, et al. Scaling law of nonsequential double ionization[J]. Physical Review A, 2015, 92(3): 033409.

[21] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994-1997.

[22] Sun R L, Colin E, Ajitanand N N, et al. Balance of mass, momentum, and energy in splintering central collisions for 40Ar up to 115 meV/nucleon[J]. Physical Review Letters, 2000, 84(1): 43-46.

[23] Fittinghoff D N, Bolton P R, Chang B, et al. Polarization dependence of tunneling ionization of helium and neon by 120-fs pulses at 614 nm[J]. Physical Review A, 1994, 49(3): 2174-2177.

[24] Mauger F, Chandre C, Uzer T. Recollisions and correlated double ionization with circularly polarized light[J]. Physical Review Letters, 2010, 105(8): 083002.

[25] Gillen G D, Walker M A, van Woerkom L D. Enhanced double ionization with circularly polarized light[J]. Physical Review A, 2001, 64(4): 043413.

[26] Ho P J, Panfili R, Haan S L, et al. Nonsequential double ionization as a completely classical photoelectric effect[J]. Physical Review Letters, 2005, 94(9): 093002.

[27] Zhou Y M, Liao Q, Zhang Q B, et al. Controlling nonsequential double ionization via two-color few-cycle pulses[J]. Optics Express, 2010, 18(2): 632-638.

[28] Haan S L, Breen L, Karim A, et al. Variable time lag and backward ejection in full-dimensional analysis of strong-field double ionization[J]. Physical Review Letters, 2006, 97(10): 103008.

[29] Panfili R, Eberly J H. Comparing classical and quantum dynamics of strong-field double ionization[J]. Optics Express, 2001, 8(7): 431-435.

[30] Wang X, Eberly J H. Elliptical polarization and probability of double ionization[J]. Physical Review Letters, 2010, 105(8): 083001.

[31] Zhou Y M, Huang C, Lu P X. Coulomb-tail effect of electron-electron interaction on nonsequential double ionization[J]. Physical Review A, 2011, 84(2): 023405.

[32] Haan S L, Smith Z S, Shomsky K N, et al. Anticorrelated electrons from weak recollisions in nonsequential double ionization[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(21): 211002.

[33] Su Q, Eberly J H. Model atom for multiphoton physics[J]. Physical Review A, 1991, 44(9): 5997-6008.

[34] Guo J, Liu X S, Chu S I. Exploration of nonsequential-double-ionization dynamics of Mg atoms in linearly and circularly polarized laser fields with different potentials[J]. Physical Review A, 2013, 88(2): 023405.

[35] Zhang Z L, Bai L H, Zhang J T. Double ionization of Ar below the recollision threshold intensity[J]. Physical Review A, 2014, 90(2): 023410.

郑晓晓, 白丽华, 冯凤珍. 椭圆偏振强激光场中Mg原子的非次序双电离[J]. 激光与光电子学进展, 2017, 54(8): 080201. Zheng Xiaoxiao, Bai Lihua, Feng Fengzhen. Non-Sequential Double Ionization of Magnesium Atom in Elliptically Polarized Strong Laser Field[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080201.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!