红外技术, 2013, 35 (2): 88, 网络出版: 2013-03-01   

红外目标识别图像复杂度度量方法综述

Survey of Image Complexity Metrics for Infrared Target Recognition
作者单位
1 北京理工大学机电学院, 北京 100081
2 军械工程学院导弹工程系, 河北 石家庄 050003
摘要
红外图像复杂度度量方法不仅可以用于描述目标识别面临的复杂场景变化, 而且在红外成像系统性能预测与评估、目标识别算法性能对比、建立和改进目标获取性能模型等方面也有广泛而重要的应用。给定了红外目标识别图像复杂度的定义, 对该领域近年来最新出现的和部分经典的度量方法进行系统的归纳总结和对比分析, 提出了度量方法选择的依据, 指出了现有度量方法的缺点和不足, 并指出红外目标识别图像复杂度度量未来将向着融合多种特征或者综合多种度量方法的趋势发展。
Abstract
Metrics of infrared image complexity were not only used to characterize the variation of complex scenario for target recognition, but also are applied widely in infrared imaging system performance prediction and evaluation, performance comparison of target recognition algorithms, constructing and improving target acquisition model, and other fields. The definition of image complexity for infrared target recognition is presented, and some recently presented and some classical image complexity metrics in this field are summarized and analyzed comparatively. The basis for choosing metrics is proposed, and the shortcomings and deficiencies of existing metrics are pointed out. Image complexity metrics for infrared target recognition will develop towards fusing many features or integrating many metrics in the future.
参考文献

[1] 何启予. 飞航导弹红外导引头 [M].北京: 中国宇航出版社 : 35-38.

[2] Sherman J W, Spector D N, Swonger C W R, et al. Automatic target recognition systems[M]. The Infrared and Electro-optical Systems Handbook, SPIE Optical Engineering Press, 1993: Emerging Systems and Technologies, 343-402.

[3] Yang L, Yang J, Yang K. Adaptive detection for infrared small target under sea-sky complex background[J]. Electronics Letters, 2004, 40(17): 1083-1085.

[4] Haik O, Lior Y, Nahmani D, et al. Effects of image restoration on acquisition of moving objects from thermal video sequences degraded by the atmosphere[J]. Optical Engineering, 2006, 45(11): 1-8.

[5] Sadjadi F A. Infrared target detection with probability density functions of wavelet transform subbands[J]. Applied Optics, 2004, 43(2): 315-323.

[6] Ralph S K, Irvine J, Snorrason M, et al. An Image Metric-Based ATR Performance Prediction Testbed[C]//35th IEEE Applied Imagery and Pattern Recognition Workshop, 2006: 1-9.

[7] Moorea R K, Campb H A, Moyerc S, et al. Masked target transform volume clutter metric applied to vehicle search[C]//Proc. of SPIE, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXI, 2010, 7662: 1-11.

[8] Gilles J, Landeau S, Dagobert T, et al. IR Image databases generation under target intrinsic thermal variability constraints[C]//International IR Target and Background Modeling & Simulation Workshop (ITBMS), Toulouse, France, 2009.

[9] Liming S, Weidong G. A New Camouflage Texture Evaluation Method Based on WSSIM and Nature Image Feature[C]//International Conference on Multimedia Technology (ICMT), 2010: 1-4.

[10] Mario I, Chacon M, Alma D, et al. Image complexity measure: a human criterion free approach[C]//Annual Meeting of the North American Fuzzy Information Processing Society, 2005: 241-246.

[11] Peters Ii R A, Strickland R N. Image Complexity Metrics for Automatic Target Recognizers[C]//Automatic Target Recognizer System and Technology Conference, Naval Surface Warfare Center, Silver Spring, MD, 1990: 1-17.

[12] Clark L G, Velten V J. Image characterization for automatic target recognition algorithm evaluations[J]. Optical Engineering, 1991, 30(2): 147-153.

[13] Wilson D L. Image based contrast to clutter modeling of detection[J]. Opt. Eng, 2001, 40(9): 1852-1857.

[14] 黄康, 毛侠, 胡海勇, 等. 复杂背景下红外弱小运动目标检测的新方法[J].航空学报, 2009, 30(9): 1754-1760.

[15] Aviram G, Rotman S R. Evaluation of human detection performance of targets embeded in natural and enhanced infrared images using image metrics[J]. Optical Engineering, 2000, 39(4): 885-896.

[16] Lucero A B, Silverman G B, Bair J W, et al. Image metrics[R]. Northrop Corporation, 1986.

[17] E S D, W M R. Detection Performance in Clutter with Variable Resolution[J]. IEEE Trans on Aerospace and Electronic Systems, 1983, 19(4): 622-630.

[18] 张建奇, 何国经, 刘德连, 等. 背景杂波对红外成像系统性能的影响 [J].红外与激光工程, 2008, 37(4): 565-568.

[19] Phillips M A, Sims S R F. Signal-to-clutter measure for ATR performance comparison[C]//Proc. SPIE 3069, Automatic Target Recognition VII, 1997.

[20] Sims S R F. Putting ATR performance on an equal basis the measurement of knowledge base distortion and relevant clutter[C]//Proc. SPIE 4050, Automatic Target Recognition X, 2000.

[21] He G, Zhang J, Liu D, et al. Clutter metric based on the Cramer-Rao lower bound on automatic target recognition[J]. Applied Optics, 2008, 47(29): 5534-5540.

[22] Chang H, Zhang J. Evaluation of human detection performance using target structure similarity clutter metrics[J]. Optical Engineering, 2006, 45(9): 1-7.

[23] Mao X, Diao W. Criterion to Evaluate the Quality of Infrared Small Target Images[J]. J Infrared Milli Terahz Waves, 2009(30): 56-64.

[24] Birkemark C M. Cameva, A methodology for estimation of target detectability[R]. Utrecht: Workshop on "search and target acquisition", 1999.

[25] Anderson D R, Moore J, Montgomery J, et al. Infrared Seeker Performance Metrics[R]. Invariant Corporation, 2003.

[26] Carlson J J, Jordan J B, Flachs G M. Task Specific Complexity Metrics For Electronic Vision[C]//Proc. SPIE 0901, Image Processing, Analysis, Measurement, and Quality, 1988: 35-43.

[27] Lanterman A D, Sullivan J A O, Miller M I. Kullback-Leibler distances for quantifying clutter and models[J]. Opt. Eng, 1999, 38(12): 2134-2146.

[28] Rong S, Bhanu B. Modeling Clutter and Context for Target Detection in Infrared Images[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, California Univ, 1996: 106-113.

[29] Zhu S, Lanterman A D, Miller M I. Clutter modeling and Performance analysis in Automatic Target recognition[R]. Workshop on detection and classification of difficult targets, 1998.

[30] Toet A. Structural similarity determines search time and detection probability[J]. Infrared Phys Technology, 2010, 53: 464-468.

[31] Li Q, Yang C, Zhang J. Target acquisition performance in a cluttered environment[J]. Applied Optics, 2012, 51(31): 7668-7673.

[32] 何国经, 张建奇, 刘德连, 等. 一种基于结构相似度的杂波尺度 [J].西安电子科技大学学报, 2009, 36(1): 166-170.

[33] Shteinman A, Bushlin Y. Background clutter in the SW infrared spectral band: measurement and analysis[C]//Proc. SPIE 3375, Targets and Backgrounds: Characterization and Representation IV, 1998: 39-47.

[34] Aviram G, Rotman S R. Evaluating human detection performance of targets and false alarms, using a statistical texture image metric[J]. Opt. Eng, 2000, 39(8): 2285-2295.

[35] Copeland A C, Trivedi M M. texture perception in humans and computers,models and psychophysical experiments[C]//Proc. SPIE 2742, Targets and Backgrounds: Characterization and Representation II, 1996: 436-446.

[36] Waldman G, Wootton J, Hobson G, et al. A normalized clutter measure for images[J]. Computer Vision, Graphics, and Image Processing, 1988, 42(2): 137-156.

[37] Shirvaikar M V, Trivedi M M. Developing texture based image clutter measures for object detection[J]. Optical Engineering, 1992, 31(12): 2628-2639.

[38] 刁伟鹤, 毛侠, 常乐. 一种新的红外目标图像质量评价方法 [J].航空学报, 2010, 31(10): 2026-2033.

[39] Tidhar G, Rotman S R. Clutter metrics for target detection systems[C]//17th IEEE Meeting in Israel, Ramat Gan, Israel, 1991: 166-169.

[40] Chang H, Zhang J. Evaluation of human detection performance using target structure similarity clutter metrics[J]. Opt. Eng, 2006, 45(9): 1-7.

[41] Chu X, Yang C, Li Q. Contrast sensitivity function based clutter metric[J]. Opt. Eng, 2012, 51(6): 1-6.

[42] Mahalanobis A, Sims S R F, Van Nevel A. Signal-to-clutter measure for measuring automatic target recognition performance using complimentary eigenvalue distribution analysis[J]. Opt. Eng, 2003, 42(4): 1144-1151.

[43] Yang C, Wu J, Li Q, et al. Sparse-representation-based clutter metric[J]. Applied Optics, 2011, 50(11): 1601-1605.

[44] Yang C, Zhang J, Xu X, et al. Quaternion phase-correlation-based clutter metric for color images[J]. Optical Engineering, 2007, 46(12): 1-7.

[45] Bitouk D, Miller M L, Younes L. Clutter Invariant ATR[J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 2005, 27(5): 817-821.

[46] Kowalczyk M L, Rotman S R. Characterization of Backgrounds[M]. Electro-optical imaging : system performance and modeling, Washington, USA:SPIE Press, 2000, 28: 1-21.

[47] Singh H, Gautam V, Bhaskara M, et al. Two dimensional clutter: a new definition[C]//36th Midwest Symposium on Circuits and Systems, 1993: 88-91.

[48] Cathchart J M, Doll T J, Schmieder D E. Target detection in urban clutter[J]. IEEE Transactions On Systems Man And Cybernetics, 1989, 19(5): 1242-1250.

[49] Silk J D. statistical variance analysis of clutter scenes and application to a target acquisition test[R]. IDA Paper P-2950, Alexandria, VA: Institute for Defense Analysis, 1995.

[50] Qingyu H, Wei Z, Chunfeng W, et al. Adaptive small target detection based on evaluating complex degree of infrared image[C]//Proc.of SPIE International Symposium on Photoelectronic detection and imaging, 2009, 7383: 1-8.

[51] Yang L, Zhou Y, Yang J, et al. Variance WIE based infrared images processing[J]. Electronics Letters, 2006, 42(15): 1-2.

[52] Meitzler T J, Karlsen R E, Gerhart G R, et al. Wavelet transforms of cluttered images and their application to computing the probability of detection[J]. Optical Engineering, 1996, 35(10): 3019-3025.

[53] Chang H, Zhang J, Wang X, et al. Background clutter and detection algorithm-based staring IR seeker preformance evaluation [C]//Proc. SPIE, Infrared Components and Their Applications, 2005, 5640: characterization[C]//International Conference on Image Processing, 381-390. 2000: 467-470.

[54] 张建奇, 王晓蕊. 光电成像系统建模及性能评估理论 [M]. 西安: 西安电子科技大学出版社, 2010: 305-350.

[55] Groves G K, Chacon K M, Prager K E, et al. Quantification of clutter in electro-optical tracking systems[C]//Proc. SPIE Acquisition, Tracking, and Pointing VIII, 1994, 2221: 287-295.

[56] Salem S, Halford C, Moyer S, et al. Rotational clutter metric[J]. Opt.Eng, 2009, 48(8): 1-11.

[57] Perju V, Casasent D, Mardare I. Image complexity matrix for pattern and target recognition based on Fourier spectrum analysis[C]//Proc. SPIE Optical Pattern Recognition XX, 2009, 7340: 1-9.

[58] Rotman S R, Hsu D, Cohen A, et al. Textural metrics for clutter affecting human target acquisition[J]. Infrared Phys Techn., 1996(37): 667-674.

[59] Chen Y, Chen G, Blum R S, et al. Image Quality Measures for Predicting Automatic Target Recognition Performance[C]//IEEE Aerospace Conference, 2008: 1-9.

[60] Noah M A, Noah P V, Schroeder J, et al. Background characterization techniques for pattern recognition applications[C]//Proc. SPIE Aerospace Pattern Recognition, 1989, 1098: 55-70.

[61] Meitzler T, Gerhart G, Singh H. A relative clutter metric[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 968-976.

[62] Namuduri K R, Bouyoucef K, Kaplan L M. Image metrics for clutter characterization[C]//International Conference on Image Processing, 2000: 467-470.

[63] Fadiran O O, Molnar P, Kaplan L M. A statistical approach to quantifying clutter in hyperspectral infrared images[C]//IEEE Aerospace Conference, 2006: 1-10.

[64] Ralph S K, Irvine J, Snorrason M, et al. An Image Metric-Based ATR Performance Prediction Testbed[C]//Proceedings of the 34th Applied Imagery and Pattern Recognition Workshop, 2005: 1-6.

[65] 黄康, 毛侠, 梁晓庚. 红外小目标图像的背景杂波量化方法[J]. 光学学报, 2011, 31(3): 1-6.

[66] Voicu L I, Uddin M, Myler H R, et al. Clutter modeling in infrared images using genetic programming[J]. Opt. Eng, 2000, 39(9): 2359-2371.

[67] Shirvaikar M V, Trivedi M M. Developing texture-based image clutter measures for object detection[J]. Optical Engineering, 1992, 31(12): 2628-2639.

[68] 常洪花,张建奇. 基于人眼视觉系统的红外背景杂波量化技术[J]. 红外技术, 2004, 26(5): 13-17.

[69] Moore R K, Camp H A, Moyer S, et al. Triangle search experiment to isolate scene clutter effects[C]//Proceedings of the SPIE, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXI, 2010: 1-9.

乔立永, 徐立新, 高敏. 红外目标识别图像复杂度度量方法综述[J]. 红外技术, 2013, 35(2): 88. QIAO Li-yong, XU Li-xin, GAO Min. Survey of Image Complexity Metrics for Infrared Target Recognition[J]. Infrared Technology, 2013, 35(2): 88.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!