中国激光, 2019, 46 (6): 0614012, 网络出版: 2019-06-14   

基于有机光电材料的太赫兹波调制器件研究进展 下载: 1236次

Recent Progress of Terahertz Wave Modulator Based on Organic Photoelectric Materials
作者单位
首都师范大学物理系北京市太赫兹波谱与成像重点实验室, 太赫兹光电子学教育部重点实验室, 北京 100048
引用该论文

张波, 和挺, 钟良, 汪国崔, 王维, 沈京玲. 基于有机光电材料的太赫兹波调制器件研究进展[J]. 中国激光, 2019, 46(6): 0614012.

Bo Zhang, Ting He, Liang Zhong, Guocui Wang, Wei Wang, Jingling Shen. Recent Progress of Terahertz Wave Modulator Based on Organic Photoelectric Materials[J]. Chinese Journal of Lasers, 2019, 46(6): 0614012.

参考文献

[1] Lee YS. Principles of terahertz science and technology[M]. Heidelberg: Springer, 2009: 1- 56.

[2] SaeedkiaD. Handbook of terahertz technology for imaging, sensing and communications[M]. Cambridge: Woodhead Publishing, 2013.

[3] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications[J]. Journal of Applied Physics, 2010, 107(11): 111101.

[4] Song H J, Nagatsuma T. Present and future of terahertz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 256-263.

[5] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(2): 143-171.

[6] Libon I H, Baumgärtner S, Hempel M, et al. An optically controllable terahertz filter[J]. Applied Physics Letters, 2000, 76(20): 2821-2823.

[7] Tan Z Y, Chen Z, Cao J C, et al. Wireless terahertz light transmission based on digitally-modulated terahertz quantum-cascade laser[J]. Chinese Optics Letters, 2013, 11(3): 031403.

[8] Suzuki S, Asada M, Teranishi A, et al. Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature[J]. Applied Physics Letters, 2010, 97(24): 242102.

[9] Ishigaki K, Shiraishi M, Suzuki S, et al. Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes[J]. Electronics Letters, 2012, 48(10): 582-583.

[10] Gu J Q, Singh R, Liu X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151.

[11] Suzuki D, Oda S, Kawano Y. GaAs/AlGaAs field-effect transistor for tunable terahertz detection and spectroscopy with built-in signal modulation[J]. Applied Physics Letters, 2013, 102(12): 122102.

[12] Goldflam M D, Driscoll T, Chapler B, et al. Reconfigurable gradient index using VO2 memory metamaterials[J]. Applied Physics Letters, 2011, 99(4): 044103.

[13] Jonsson P, Ilkov M, Manolescu A, et al. Tunability of the terahertz space-charge modulation in a vacuum microdiode[J]. Physics of Plasmas, 2013, 20(2): 023107.

[14] Weis P. Garcia-Pomar J L, Höh M, et al. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6(10): 9118-9124.

[15] Degl'Innocenti R, Jessop D S, Shah Y D, et al. . Low-bias terahertz amplitude modulator based on split-ring resonators and graphene[J]. ACS Nano, 2014, 8(3): 2548-2554.

[16] Wen Q Y, Tian W, Mao Q, et al. Graphene based all-optical spatial terahertz modulator[J]. Scientific Reports, 2015, 4: 7409.

[17] McGehee M D, Heeger A J. Semiconducting (conjugated) polymers as materials for solid-state lasers[J]. Advanced Materials, 2000, 12(22): 1655-1668.

[18] Keun Yoo H, Kang C, Yoon Y, et al. Organic conjugated material-based broadband terahertz wave modulators[J]. Applied Physics Letters, 2011, 99(6): 061108.

[19] Keun Yoo H, Lee S G, Kang C, et al. Terahertz modulation on angle-dependent photoexcitation in organic-inorganic hybrid structures[J]. Applied Physics Letters, 2013, 103(15): 151116.

[20] Keun Yoo H, Yoon Y, Lee K, et al. Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers[J]. Applied Physics Letters, 2014, 105(1): 011115.

[21] Matsui T, Takagi R, Takano K, et al. Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials[J]. Optics Letters, 2013, 38(22): 4632-4635.

[22] He T, Zhang B, Shen J L, et al. High-efficiency THz modulator based on phthalocyanine-compound organic films[J]. Applied Physics Letters, 2015, 106(5): 053303.

[23] Zhang B, He T, Shen J L, et al. Conjugated polymer-based broadband terahertz wave modulator[J]. Optics Letters, 2014, 39(21): 6110-6113.

[24] Calvete M, Yang G Y, Hanack M. Porphyrins and phthalocyanines as materials for optical limiting[J]. Synthetic Metals, 2004, 141(3): 231-243.

[25] Zhuang T J, Su Z S, Liu Y D, et al. Improvement of both efficiency and working lifetime in organic photovoltaic devices by using bathophenanthroline/tin(IV) phthalocyanine dichloride as bilayer exciton blocking layers[J]. Applied Physics Letters, 2012, 100(24): 243902.

[26] Torre GD, BottariG, HahnU, et al. Functional phthalocyanine molecular materials[M]. Heidelberg: Springer, 2010.

[27] Coakley K M. McGehee M D. Conjugated polymer photovoltaic cells[J]. Chemistry of Materials, 2004, 16(23): 4533-4542.

[28] Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene[J]. Physical Review Letters, 1979, 42(25): 1698-1701.

[29] Tessler N, Denton G J, Friend R H. Lasing from conjugated-polymer microcavities[J]. Nature, 1996, 382(6593): 695-697.

[30] He T, Zhang B, Wang G C, et al. High efficiency THz-wave modulators based on conjugated polymer-based organic films[J]. Journal of Physics D: Applied Physics, 2016, 49(7): 075111.

[31] Yang Z, Aravazhi S, Schneider A, et al. Synthesis and crystal growth of stilbazolium derivatives for second-order nonlinear optics[J]. Advanced Functional Materials, 2005, 15(7): 1072-1076.

[32] Li J S, Li S H, Zhang L. Terahertz modulator using 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST)/Si hybrid structure[J]. IEEE Photonics Journal, 2018, 10(2): 5900306.

[33] Liu W M, Fan F, Xu S T, et al. Terahertz wave modulation enhanced by laser processed PVA film on Si substrate[J]. Scientific Reports, 2018, 8: 8304.

[34] Ponseca C S, Savenije T J, Abdellah M, et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination[J]. Journal of the American Chemical Society, 2014, 136(14): 5189-5192.

[35] Wehrenfennig C, Liu M Z, Snaith H J, et al. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx[J]. Energy & Environmental Science, 2014, 7(7): 2269-2275.

[36] Wehrenfennig C, Eperon G E, Johnston M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589.

[37] Zhang B, Lü L, He T, et al. Active terahertz device based on optically controlled organometal halide perovskite[J]. Applied Physics Letters, 2015, 107(9): 093301.

[38] Lee K S, Kang R, Son B, et al. All-optical THz wave switching based on CH3NH3PbI3 perovskites[J]. Scientific Reports, 2016, 6: 37912.

[39] Yan H J, An B L, Fan Z F, et al. Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film[J]. Applied Physics A, 2016, 122(4): 414.

[40] Cong L Q, Srivastava Y K, Solanki A, et al. Perovskite as a platform for active flexible metaphotonic devices[J]. ACS Photonics, 2017, 4(7): 1595-1601.

[41] Chanana A, Zhai Y X, Baniya S, et al. Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites[J]. Nature Communications, 2017, 8: 1328.

[42] ChananaA, Liu XJ, ZhangC, et al. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites[J]. Science Advances, 2018, 4(5): eaar7353.

[43] Zhong L, Zhang B, He T, et al. Conjugated polymer based active electric-controlled terahertz device[J]. Applied Physics Letters, 2016, 108(10): 103301.

[44] Du Y, Tian H, Cui X, et al. Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes[J]. Journal of Materials Chemistry C, 2016, 4(19): 4138-4142.

[45] Wang W, Ji H Y, Liu D D, et al. Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide-doped PEDOT∶PSS[J]. Optics Express, 2018, 26(20): 25849-25857.

张波, 和挺, 钟良, 汪国崔, 王维, 沈京玲. 基于有机光电材料的太赫兹波调制器件研究进展[J]. 中国激光, 2019, 46(6): 0614012. Bo Zhang, Ting He, Liang Zhong, Guocui Wang, Wei Wang, Jingling Shen. Recent Progress of Terahertz Wave Modulator Based on Organic Photoelectric Materials[J]. Chinese Journal of Lasers, 2019, 46(6): 0614012.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!