Frontiers of Optoelectronics, 2018, 11 (4): 413–418, 网络出版: 2019-01-10  

A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory

A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory
作者单位
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic information, Huazhong University of Science and Technology, Wuhan 430074, China
摘要
Abstract
Previous theoretical researches on the twodimensional terahertz spectroscopy (2DTS), which are conducted via inefficiently time-consuming numerical simulation, deal with only single-mode system. To overcome the limitations, we derive a classical-theory-based analytical solution which is applicable to multi-modes system. Three typical weak sources of nonlinearities are introduced. The findings suggest that the analytical results correspond well with those obtained by the traditional numerical simulation. Thus the study provides a more efficient and practical method to directly calculate 2DTS, and, in a broader sense, sheds new light on the theory of 2DTS.
参考文献

[1] Hattori T. Classical theory of two-dimensional time-domain terahertz spectroscopy. Journal of Chemical Physics, 2010, 133(20): 204503

[2] Cervetto V, Helbing J, Bredenbeck J, Hamm P. Double-resonance versus pulsed Fourier transform two-dimensional infrared spectroscopy: an experimental and theoretical comparison. Journal of Chemical Physics, 2004, 121(12): 5935–5942

[3] Okumura K, Tanimura Y. Two-dimensional THz spectroscopy of liquids: non-linear vibrational response to a series of THz laser pulses. Chemical Physics Letters, 1998, 295(4): 298–304

[4] Woerner M, Kuehn W, Bowlan P, Reimann K, Elsaesser T. Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids. New Journal of Physics, 2013, 15(2): 025039

[5] Zanni M T, Gnanakaran S, Stenger J, Hochstrasser R M. Heterodyned two-dimensional infrared spectroscopy of solventdependent conformations of acetylproline-NH2. Journal of Physical Chemistry B, 2001, 105(28): 6520–6535

[6] Woutersen S, Hamm P. Nonlinear two-dimensional vibrational spectroscopy of peptides. Journal of Physics Condensed Matter, 2002, 14(39): R1035–R1062

[7] Woutersen S, Hamm P. Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy. Journal of Physical Chemistry B, 2000, 104(47): 11316–11320

[8] Hamm P, Lim M, DeGrado W F, Hochstrasser R M. The twodimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 2036–2041

[9] Bredenbeck J, Helbing J, Behrendt R, Renner C, Moroder L, Wachtveitl J, Hamm P. Transient 2D-IR spectroscopy: snapshots of the nonequilibrium ensemble during the picosecond conformational transition of a small peptide. Journal of Physical Chemistry B, 2003, 107(33): 8654–8660

[10] Jewariya M, Nagai M, Tanaka K. Enhancement of terahertz wave generation by cascaded c(2) processes in LiNbO3. Journal of the Optical Society of America. B, Optical Physics, 2009, 26(9): A101–A106

[11] Hebling J, Almási G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166

[12] Yeh K L, Hoffmann M C, Hebling J, Nelson K A. Generation of 10 mJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 2007, 90(17): 171121

[13] Elsaesser T, Reimann K, Woerner M. Focus: phase-resolved nonlinear terahertz spectroscopy–from charge dynamics in solids to molecular excitations in liquids. Journal of Chemical Physics, 2015, 142(21): 212301

[14] Kuehn W, Reimann K, Woerner M, Elsaesser T. Phase-resolved two-dimensional spectroscopy based on collinear n-wave mixing in the ultrafast time domain. Journal of Chemical Physics, 2009, 130(16): 164503

[15] Pashkin A, Sell A, Kampfrath T, Huber R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics, 2013, 15(6): 065003

[16] Hu J, Liu J, Li H, Wang K, Yang Z, Wang S. Influence of the amplitude ratio between two terahertz pulses on two-dimensional spectroscopy. Chinese Science Bulletin, 2014, 59(2): 138–146

[17] Li H, Liu J, Wang K, Yang Z. A classical iterative theory based on the Langevin equation for two-dimensional nonlinear terahertz spectroscopy. Journal of Modern Optics, 2013, 60(10): 773–780

[18] Li H, Liu J, Wang K, Yang Z, Du Z. Influence of terahertz pulse width on two-dimensional terahertz spectroscopy. Journal of Modern Optics, 2012, 59(10): 923–929

[19] Okumura K, Tanimura Y. Sensitivity of two-dimensional fifth-order Raman response to the mechanism of vibrational mode-mode coupling in liquid molecules. Chemical Physics Letters, 1997, 278(1–3): 175–183

, , , , . A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Frontiers of Optoelectronics, 2018, 11(4): 413–418. Feidi XIANG, Kejia WANG, Zhengang YANG, Jinsong LIU, Shenglie WANG. A direct method to calculate second-order two-dimensional terahertz spectroscopy in frequency-domain based on classical theory[J]. Frontiers of Optoelectronics, 2018, 11(4): 413–418.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!