激光与光电子学进展, 2018, 55 (7): 071603, 网络出版: 2018-07-20   

低温合成纳米氧化锌及其光学性能研究 下载: 765次

Synthesis and Optical Properties of Nano-ZnO at Low Temperature
作者单位
1 延安大学物理与电子信息学院, 陕西 延安 716000
2 西北大学信息科学与技术学院, 陕西 西安 710127
摘要
为了研究ZnO的光学特性随溶液浓度变化的规律,采用水热法在低温条件下合成了具有六方纤锌矿结构的纳米ZnO材料。分别对样品的形貌、结构、光学特性进行了表征和分析。研究结果表明,纳米ZnO沿着(002)晶面择优生长,生长机理分析表明络合离子Zn(OH)2-4是纳米ZnO的生长基元,样品形貌的形成受到溶液的浓度、温度、反应时间等因素的影响。随着OH-与Zn2+浓度比的增大,样品由棒状结构变为片状形态,并出现了团聚现象。光致发光谱表明,样品具有优异的红绿光发射能力,在560 nm波长附近具有明显的可见光发射带,在374 nm附近具有一个明显的紫外发射峰。最后讨论了样品的发光机理。
Abstract
In order to explore the rule of optical properties of ZnO changing with the concentration of solution, nano-ZnO with hexagonal wurtzite structure is synthesized by hydrothermal method at low temperature. Then, the morphology, structure and optical properties of the samples are characterized, respectively. The results indicate that nano-ZnO grows preferentially along the (002) plane. And complex of Zn (OH) 2-4 is the growth element of nano-ZnO. The morphology of the samples is influenced by the concentration, temperature and reaction time of the solution. As the concentration ratio of OH- and Zn2+ increases, the sample changes from the rod-like structure to the flaky form, and the phenomenon of reunion appears. Photoluminescence (PL) spectra shows that the sample has fine emission ability in red to green band, and it has not only an obvious visible emission band near the wavelength of 560 nm, but also a ultraviolet emission peak near 374 nm. Finally, the luminescence mechanism of the sample is discussed.
参考文献

[1] 张雄斌, 贺辛亥, 程稼稷. 纳米氧化锌的制备及改性研究进展[J].人工晶体学报, 2017, 46(10): 2054-2057.

    Zhang X B, He X H, Cheng J J.Preparation and modified development of nano ZnO[J]. Journal of Synthetic Crystals, 2017, 46(10): 2054-2057.

[2] Li Y, Feng Y, Zhou Q C, et al. Effects of microwave irradiation on the structure of zinc oxide sorbents for high temperature coal gas desulfurization[J]. Energy & Fuels, 2017, 31(8): 8512-8520.

[3] Bhat S, Wiehl L, Molinaluna L, et al. High-pressure synthesis of novel boron oxynitride B6N4O3 with sphalerite type structure[J]. Chemistry of Materials, 2015, 27(17): 5907-5914.

[4] Corpuz A, Richards R.Chemistry of rock salt-structured (111) metal oxides[M]∥Nanoscale Materials in Chemistry: Environmental Applications: Chapter 4, ACS Symposium Series, 2010, 1045: 51-76.

[5] Wang F, Seo J H, Li Z D, et al. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes[J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1288-1293.

[6] Malik G, Jaiswal J, Mourya S, et al. Optical and other physical properties of hydrophobic ZnO thin films prepared by dc magnetron sputtering at room temperature[J]. Journal of Applied Physics, 2017, 122(14): 143105.

[7] Xu L P, Li X, Zhan Z Y, et al. Catalyst-free, selective growth of ZnO nanowires on SiO2 by chemical vapor deposition for transfer-free fabrication of UV photodetectors[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 20264-20271.

[8] 周兴, 翟天佑. 二维材料新起之秀: Ⅳ-Ⅵ族半导体[J]. 中国激光, 2017, 44(7): 0703006.

    Zhou X, Zhai T Y.Fresh blood of two-dimensional materials: group IV-VI semiconductors[J]. Chinese Journal of Lasers, 2017, 44(7): 0703006.

[9] 肖和平, 孙如剑, 马祥柱, 等. PECVD法制备SiO2薄膜致密性的特性[J]. 激光与光电子学进展, 2016, 53(12): 123101.

    Xiao H P, Sun R J, Ma X Z, et al. Characteristics of compactness of SiO2 thin films prepared by PECVD method[J]. Laser & Optoelectronics Progress, 2016, 53(12): 123101.

[10] Ou C L, Sanchez-Jimenez P E, Datta A, et al. Template-assisted hydrothermal growth of aligned zinc oxide nanowires for piezoelectric energy harvesting applications[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 13678-13683.

[11] Cosentino S, Fiaschi G, Strano V, et al. Role of AuxPt1-x clusters in the enhancement of the electrochemical activity of ZnO nanorod electrodes[J]. The Journal of Physical Chemistry C, 2017, 121(29): 15644-15652.

[12] Nam G, Park Y, Ji I, et al. Facile synthesis and enhanced ultraviolet emission of ZnO nanorods prepared by vapor-confined face-to-face annealing[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 873-879.

[13] 鲍艳, 张永辉, 马建中, 等. 一维纳米氧化锌的制备及应用研究进展[J]. 材料工程, 2015 43(2): 103-112.

    Bao Y, Zhang Y H, Ma J Z, et al. Progress in preparation and application of one-dimensional nano zinc oxide[J]. Journal of Materials Engineering, 2015, 43(2): 103-112

[14] Xiao J X, Ong W L, Guo Z M, et al. Resistive switching and polarization reversal of hydrothermal-method-grown undoped zinc oxide nanorods by using scanning probe microscopy techniques[J]. ACS Applied Materials & Interfaces, 2015, 7(21): 11412-11422.

[15] Lyu S C, Zhang Y, Lee C J, et al. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method[J]. Chemistry of Materials, 2003, 15(17): 3294-3299.

[16] Bekermann D, Gasparotto A, Barreca D, et al. Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process[J]. Crystal Growth & Design, 2010, 10(4): 2011-2018.

[17] 杨丽, 张玉梅. 无机粉末的化学镀Fe-Ni合金[J]. 新技术新工艺, 1997(1): 37-39.

    Yang L, Zhang Y M. Electroless plating of inorganic powder for Fe-Ni alloy[J]. New Technology & New Process, 1997(1): 37-39.

[18] Masset A C, Michel C, Maignan A, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9[J]. Physical Review B, 2000, 62(1): 166-175.

[19] Li S W, Funahashi R, Matsubara I, et al. Synthesis and thermoelectric properties of the new oxide materials Ca3-xBixCo4O9+δ (0

[20] 杜庆波, 蔡红, 曹稳根. 花状的氧化锌纳米结构的制备及其光学性能[J]. 光谱实验室, 2013, 30(2): 963-966.

    Du Q B, Cai H, Cao W G.Synthesis of flower-like ZnO nanostructure and its optical properties[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(2): 963-966.

[21] 刘建华, 王炳山, 袁建军. 氧化锌纳米棒粉体的晶种法制备及尺寸调控[J]. 中国粉体技术, 2017, 23(1): 7-10.

    Liu J H, Wang B S, Yuan J J. Fabrication and morphological size control of one-dimensional nano ZnO by inoculating seed method[J]. China Powder Science and Technology, 2017, 23(1): 7-10.

[22] 沈俊海, 李佳佳, 李良超, 等. 分级结构氧化锌的制备及形貌调控[J]. 高等学校化学学报, 2014, 35(6): 1135-1141.

    Shen J H, Li J J, Li L C, et al. Fabrication and morphological control of hierarchical-structure ZnO[J]. Chemical Journal of Chinese Universities, 2014, 35(6): 1135-1141.

[23] Ichikawa T, Shiratori S. Fabrication and evaluation of ZnOnanorods by liquid-phase deposition[J]. Inorganic Chemistry, 2011, 50(3): 999-1004.

[24] 游天桂. ZnO纳米线的制备及其磁光性能研究[D]. 西安: 西北大学, 2012: 23-26.

    You T G. Preparation of ZnO nanowires and their magneto-optical properties[D]. Xi′an: Northwest University, 2012: 23-26.

[25] 赵旭, 姜妲, 梁晨. 一维纳米氧化锌的溶剂热法制备及其光致发光性能[J]. 材料导报, 2015, 29(S1): 17-19.

    Zhao X, Jiang D, Liang C. Solvothermal synthesis and photoluminescence of one-dimensional nano ZnO[J]. Materials Review, 2015, 29(S1): 17-19.

[26] Zeng Y J, Schouteden K,Amini M N, et al. Electronic band structures and native point defects of ultrafine ZnO nanocrystals[J]. ACS Applied Materials & Interfaces, 2015, 7(19): 10617-10622.

[27] Brker S, Kück D, Timmer A, et al. Correlating the local defect-level density with the macroscopic composition and energetics of chalcopyrite thin-film surfaces[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 13062-13072.

[28] 崔红卫, 张富春, 邵婷婷. Sn掺杂ZnO电子结构与光学性质的第一性原理研究[J]. 光学学报, 2016, 36(7): 0716002.

    Cui H W, Zhang F C, Shao T T. First-principles study on electronic structure and optical properties of Sn-doped ZnO[J]. Acta Optica Sinica, 2016, 36(7): 0716002.

[29] Chernikov A, Horst S, Waitz T, et al. Photoluminescence properties of ordered mesoporous ZnO[J].The Journal of Physical Chemistry C, 2011, 115(5): 1375-1379.

[30] Ren Q H, Balint-Kurti G G. Design of infrared laser pulses for the vibrational de-excitation of translationally cold Li2 molecules[J]. The Journal of Physical Chemistry A, 2009, 113 (52): 14255-14260.

王魏, 张富春, 闫军锋, 李晓, 张雄, 李小敏. 低温合成纳米氧化锌及其光学性能研究[J]. 激光与光电子学进展, 2018, 55(7): 071603. Wang Wei, Zhang Fuchun, Yan Junfeng, Li Xiao, Zhang Xiong, Li Xiaomin. Synthesis and Optical Properties of Nano-ZnO at Low Temperature[J]. Laser & Optoelectronics Progress, 2018, 55(7): 071603.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!