激光技术, 2018, 42 (5): 651, 网络出版: 2018-09-11   

双频微片激光器的功率均衡机制实验研究

Experimental study about power balance mechanism in dual-frequency microchip lasers
作者单位
1 杭州电子科技大学 通信工程学院, 杭州 310018
2 杭州电子科技大学 卓越学院, 杭州 310018
3 国家电网有限公司 浙江省电力公司 物资分公司, 杭州 310007
摘要
为了研究双频Nd∶YVO4微片激光器的功率均衡机制, 利用实验研究分析了微片激光器的抽运电流、工作温度和谐振波长等参量之间关系。不断增大双频激光器抽运电流, 通过降低晶体温度不断重新实现双频激光功率的均衡, 最终获得了不同抽运电流下的双频激光器的功率均衡温度, 以及双频功率积与抽运电流的关系数据。结果表明, 双频激光信号功率均衡温度与抽运电流呈分段负相关, 双频功率积与抽运电流呈正相关。此结果说明通过改变抽运电流和温控温度可以实现功率可调的功率均衡的双频激光信号输出。
Abstract
In order to investigate output power balance mechanism of Nd∶YVO4 microchip dual-frequency lasers (DFL), the relationships among pump current, operating temperature and dual-mode wavelengths of microchip lasers were analyzed by means of experiments. With the increase of pump current of DFL, the balance of DFL power was re-achieved by lowering the temperature of laser crystal. Finally, the power-balanced temperature of DFL with different pump currents and the relationship between dual-frequency power product and pump current of DFL were obtained. The result shows that, the power-balanced temperature of DFL signal is negatively correlated with pump current sectionally, and dual frequency power product is positively correlated with pump current. It indicated that, power-balanced power-adjustable dual-frequency laser signal output can be achieved by changing pump current and controlling temperature.
参考文献

[1] YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.

[2] WAN X J, ZHANG Sh L, TAN Y D. Development of optical feedback technology of LD pumped microchip lasers[J]. Laser Technology, 2006,30(1): 9-12(in Chinese).

[3] KOENIG S, LOPEZ-DIAZ D, ANTES J, et al. Wireless sub-THz communication system with high data rate[J]. Nature Photonics, 2013, 7(12): 977-981.

[4] SEEDS A J, FICE M J, BALAKIER K,et al. Coherent terahertz photonics[J]. Optics Express, 2013, 21(19): 22988-23000.

[5] SEEDS A J, SHAMS H, FICE M J, et al. THz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015, 33(3): 579-586.

[6] PILLET G, MORVAN L, BRUNEL M, et al. Dual-frequency laser at 1.5μm for optical distribution and generation of high-purity microwave signal[J]. Journal of Lightwave Technology, 2008, 26(15): 2764-2773.

[7] CHENG C, ZHANG S. Diode-pumped dual-frequency microchip Nd∶YAG laser with tunable frequency difference[J]. Journal of Physics,2009, D42(15): 155107.

[8] DLEN X, BALEMBOIS F, GEORGES P. Temperature dependence of the emission cross section of Nd∶YVO4 around 1064nm and consequences on laser operation[J]. Journal of the Optical Society of America, 2011, B28(5): 972-976.

[9] NOTAKE T, SAITO T, TATEMATSU Y, et al. Development of a novel high power sub-THz secong harmonic gyrotron[J]. Physical Review Letters, 2009, 103(22): 225002.

[10] FORD C J B, SIMPSON P J, ZAILER I, et al. Charging and double-frequency Aharonov-Bohm effects in an open system[J]. Physical Review, 1994, B49(24): 17456-17459.

[11] HU M, SUN X, LI Q L, et al. Investigation of mode competition in dual-frequency Nd∶YVO4 microchip laser[J]. Chinese Journal of Lasers, 2015, 42(7): 0702009(in Chinese).

[12] GOUT J L, MORVAN L, ALOUINI M, et al. Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability[J]. Optics Letters, 2007, 32(9): 1090-1092.

[13] GUDELEV V G, MASHKO V V, NIKEENKO N K, et al. Diode-pumped cw tunable two-frequency YAG∶Nd3+, laser with coupled resonators[J]. Applied Physics, 2003, B76(3): 249-252.

[14] CHEN X F, DENG Zh Ch, YAO J P. Photonic generation of microwave signal using a dual-wavelength single -longitudinal-mode fiber ring laser[J]. IEEE Transactions on Microwave Theory and Techniques,2006, 54(2): 804-809.

[15] ZHOU B Q, GAO Y Zh, CHEN Ch R, et al. Principles of lasers [M]. 6th ed.Beijing: National Defence Industry Press, 2008: 72-75(in Chinese).

[16] SCHMITT N P, PEUSER P, HEINEMANN S, et al. A model describing the signal and multiple line spectra of tunable microcrystal laser[J]. Optics & Quantum Electronics, 1993, 25(8): 527-544.

[17] LIU W S, JIANG M, CHEN D R, et al. Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwane generation[J]. Journal of Lightwave Technology, 2009, 27(20): 4455-4459.

[18] HU M, ZHANG Y, GONG X R, et al. Invertigation of power equalization in a dual-frequency Nd∶YVO4 microchip laser[J]. Journal of Optorlectronics·Laser, 2016, 27(2): 145-149(in Chinese).

[19] ZHAO J T, FENG G Y, YANG H M, et al. Analysis of thermal effect and its influence on output power of thin disk laser[J]. Acta Physica Sinica, 2012, 61(8): 084208(in Chinese).

汪延安, 柯一枝, 崔恩楠, 潘镔, 蔡美伶, 陈松, 聂佳林, 胡淼. 双频微片激光器的功率均衡机制实验研究[J]. 激光技术, 2018, 42(5): 651. WANG Yan’an, KE Yizhi, CUI Ennan, PAN Bin, CAI Meiling, CHEN Song, NIE Jialin, HU Miao. Experimental study about power balance mechanism in dual-frequency microchip lasers[J]. Laser Technology, 2018, 42(5): 651.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!