红外与激光工程, 2017, 46 (12): 1218003, 网络出版: 2018-01-19   

星载激光通信载荷高体分SiC/Al主镜及支撑结构设计

Design of primary mirror and support structure of spaceborne laser communication terminal by the use of high-volume fraction SiC/Al
作者单位
长春理工大学 空间光电技术国家地方联合工程研究中心, 吉林 长春 130022
摘要
为了降低激光通信载荷在轨工作中空间环境对于光学系统的影响, 提高通信质量以及跟踪精度, 使用综合性能较好的高体分SiC/Al作为主镜材料, 并通过有限元分析确定了主镜结构的几个重要优化参数。提出了一种一体式主镜柔性支撑, 该结构避免了使用不同材料支撑组件线膨胀系数不匹配而产生的应力集中, 提高了主镜面形的温度稳定性, 并在此基础上降低了主镜及其支撑的总体质量, 实现了光学系统的轻量化。仿真分析表明, 该结构在重力释放条件下, 主镜面形误差PV值为λ/52, RMS值为λ/275。工作环境发生±4℃温度变化的情况下, 主镜面形误差PV值为λ/11, RMS值为λ/71。主镜及其一体化支撑基频为208 Hz, 主镜单独轻量化率为55.3%, 进行一体化设计后主镜及支撑相比传统设计轻量化率为19.87%, 能够满足总体指标要求。
Abstract
In order to reduce the effect of in-orbit space environment on the optical system of a laser communication terminal, improve communication quality and tracking accuracy, high-volume fraction SiC/Al that has better overall performance was used as the material of the primary mirror. Several important optimization parameters of the primary mirror structure were determined by the use of finite-element analysis. An integrated flexible support for primary mirror was proposed. The problem of stress concentration was solved because of using mismatch expansion coefficient materials for support assembly. The temperature stability of primary mirror surface shape was also improved. On the basis of this work, the weight of primary mirror and its support were reduced, a lightweight optical system was achieved. Simulation analysis shows that the PV of wavefront aberrations is λ/52 and the RMS of wavefront aberrations is λ/275, when the primary mirror under condition of gravity release. When the working environment temperature changes ±4 ℃, the PV of wavefront aberrations is λ/11 and the RMS of wavefront aberrations is λ/71. The base frequency of primary mirror and its support is 208 Hz. The lightweight rate of primary mirror is 55.3%. After integrated design, the lightweight rate of primary mirror and its support is 19.87% compared to conventional design. In summary, system overall specifications requirements can be met.
参考文献

[1] 姜会林, 江伦, 宋延嵩, 等. 一点对多点同时空间激光通信光学跟瞄技术研究[J]. 中国激光, 2015, 42(4): 0405008.

    Jiang Huilin, Jiang Lun, Song Yansong, et al. Research of optical and APT technology in one-point to multi-point simultaneous space laser communication system[J]. Chinese Journal of Lasers, 2015, 42(4): 0405008. (in Chinese)

[2] 李畅, 何欣. 大口径反射镜轻量化及其支撑结构设计[J]. 激光技术, 2015, 39(3): 337-340.

    Li Chang, He Xin. Design of lightweight large aperture mirrors and supporting structures[J]. Laser Technology, 2015, 39(3): 337-340. (in Chinese)

[3] 徐宏, 关英俊. 大口径SiC轻量化反射镜组件的结构设计[J]. 红外与激光工程, 2014, 43(S): 83-88.

    Xu Hong, Guan Yingjun. Structural design of large aperture SiC mirror subassembly[J]. Infrared and Laser Engineering, 2014, 43(S): 83-88. (in Chinese)

[4] 李志来, 徐宏, 关英俊. 1.5 m 口径空间相机主镜组件的结构设计[J]. 光学 精密工程, 2015, 23(6): 1635-1641.

    Li Zhilai, Xu Hong, Guan Yingjun. Structural design of 1.5 m mirror subassembly for space camera[J]. Optics and Precision Engineering, 2015, 23(6): 1635-1641. (in Chinese)

[5] 刘福贺, 程志峰, 石磊, 等. 长条形反射镜支撑结构设计与分析[J]. 红外与激光工程, 2015, 44(5): 1512-1517.

    Liu Fuhe, Cheng Zhifeng, Shi Lei, et al. Design and analysis of supporting structure for rectangular mirror[J]. Infrared and Laser Engineering, 2015, 44(5):1512-1517. (in Chinese)

[6] 程志峰. 航空相机反射镜支撑结构设计[J]. 仪器仪表学报, 2014, 35(6): 87-90.

    Cheng Zhifeng. Mechanical design of support structure of reflector in aerial camera[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 87-90. (in Chinese)

[7] 李海星, 丁亚林, 张洪文. 矩形反射镜结构支撑技术研究[J]. 光学学报, 2015, 35(5): 0523002.

    Li Haixing, Ding Yalin, Zhang Hongwen. Support system study of rectangular mirror[J]. Acta Optica Sinica, 2015, 35(5): 0523002. (in Chinese)

[8] Yoder P R. Opto-Mechanical Systems Design[M]. 3rd ed. Boca Raton: CRC Press, Inc, 2005.

[9] Miller J L, Friedman E. Photonics Rules of Thumb[M]. 2nd ed. New York: McGraw Hill, 2003.

[10] Arnold L. Optimized axial support topologies for thin telescope mirrors [J]. Optical Engineering, 1995, 34(2): 576-574.

[11] 王乃祥, 惠守文. 航空双波段相机胶粘主次镜柔性支撑结构设计[J]. 仪器仪表学报, 2014, 35(6): 77-81.

    Wang Naixiang, Hui Shouwen. The flexible support structure design of the glued primary -secondary mirror of the aviation dual-band camera[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 77-81. (in Chinese)

[12] 范磊, 王志, 曹玉岩. 基于力矩主动校正的反射镜支撑分析[J]. 红外与激光工程, 2015, 44(4): 1273-1277.

    Fan Lei, Wang Zhi, Cao Yuyan. Analysis of mirror support based on active moment correction[J]. Infrared and Laser Engineering, 2015, 44(4): 1273-1277. (in Chinese)

[13] 邵亮, 吴小霞, 陈宝刚,等. SiC轻量化主镜的被动支撑系统[J]. 光学 精密工程, 2015, 23(5): 1380-1386.

    Shao Liang, Wu Xiaoxia, Chen Baogang, et al. Passive support system of light-weighted SiC primary mirror[J]. Optics and Precision Engineering, 2015, 23(5):1380-1386. (in Chinese)

[14] 李宗轩. 主反射镜组件柔性环节随机振动响应分析与试验[J]. 红外与激光工程, 2014, 43(S1): 101-107.

    Li Zongxuan. Analysis and test on the response of primary mirror flexure under random vibration[J]. Infrared and Laser Engineering, 2014, 43(S1): 101-107. (in Chinese)

[15] 辛宏伟, 刘巨, 刘磊,等. 小型光学遥感器主镜室的光机结构[J]. 光学 精密工程, 2015, 23(4): 1027-1033.

    Xin Hongwei, Liu Ju, Liu Lei, et al. Support structure of primary mirror for small optical remote sensor[J]. Optics and Precision Engineering, 2015, 23(4): 1027-1033. (in Chinese)

李响, 张立中, 姜会林. 星载激光通信载荷高体分SiC/Al主镜及支撑结构设计[J]. 红外与激光工程, 2017, 46(12): 1218003. Li Xiang, Zhang Lizhong, Jiang Huilin. Design of primary mirror and support structure of spaceborne laser communication terminal by the use of high-volume fraction SiC/Al[J]. Infrared and Laser Engineering, 2017, 46(12): 1218003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!