光学学报, 2015, 35 (11): 1117003, 网络出版: 2015-10-15   

显微CT血管系统三维结构的骨架细化算法并行化设计实现 下载: 591次

Parallelization of 3D Thinning Algorithm for Extracting Skeleton of Micro-CT Vasculature
作者单位
1 中国科学院上海应用物理研究所, 上海 201800
2 中国科学院大学, 北京 100049
3 澳大利亚联邦科学与工业研究组织, 悉尼 NSW 1670
摘要
提取骨架是计算机断层扫描(CT)三维(3D)血管图像定量分析中的关键步骤,通常耗费数小时,直接制约了图像分析的定量研究。分析串行骨架细化算法各步骤中包含的可并行化操作,对其进行并行化设计,提出的算法通过OpenMP多线程技术实现,并采用不同大小的三维CT血管图像进行分析和测试。根据测试结果,改进后的算法获取到的骨架准确可靠,对于1.95 GB大小的三维血管图像,使用16个线程进行并行运算时,可将运算时间由176 min缩短到13 min,时间消耗上降低了一个数量级。因此,提出的方法可实现大型血管骨架的准确、高效提取,解决了大型三维图像分析问题中运算效率低这一瓶颈问题。
Abstract
The extraction of skeleton is often a crucial step in quantitative assessment of three-dimensional (3D) vasculature computed tomography (CT) image. The process always consumes several hours to get the skeleton, which confines the efficiency of quantitative analysis. By means of OpenMP, a parallel designing method based on sequential thinning is proposed to improve the computational time of the skeletonization. The implemented method is utilized for different sizes of real 3D vascular CT images in order to evaluate its performance and efficiency. The testing results show that the proposed method, which is implemented in 16-thread parallel, does not only extract precise skeleton, but also conspicuously reduces the processing time to an acceptable scale. The corresponding computational time is reduced from 176 min to 13 min. Therefore, the time efficiency of quantitative assessment is no longer an obstruction for the analysis of the large scale 3D vasculature CT images.
参考文献

[1] 彭冠云, 王玉荣, 任海青, 等. 基于同步辐射X射线相衬显微CT技术的竹木复合材料胶合界面特征研究[J]. 光谱学与光谱分析, 2013, 33(3): 829-833

    Peng Guanyun, Wang Yurong, Ren Haiqing, et al.. Investigation of characteristic microstructures of adhesive interface in wood/bamboo composite material by synchrotron radiation X-ray phase contrast microscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 829-833.

[2] 叶琳琳, 薛艳玲, 谭海, 等. X射线相衬显微层析及其在野山参特征结构的定量三维成像研究[J]. 光学学报, 2013, 33(12): 1234002.

    Ye Linlin, Xue Yanling, Tan Hai, et al.. X-ray phase contrast micro-tomography and its application in quantitative 3D imaging study of wild ginseng characteristic microstructures[J]. Acta Optica Sinica, 2013, 33(12): 1234002.

[3] R Chen, P Liu, T Xiao, et al.. X-ray imaging for non-destructive microstructure analysis at SSRF[J]. Advanced Materials, 2014, 26(46): 7688-7691.

[4] 肖体乔, 谢红兰, 邓彪, 等. 上海光源X射线成像及其应用研究进展[J]. 光学学报, 2014, 34(1): 0100001.

    Xiao Tiqiao, Xie Honglan, Deng Biao, et al.. Progresses of X-ray imaging methodology and its applications at Shanghai Synchrotron Radiation Facility[J]. Acta Optica Sinica, 2014, 34(1): 0100001.

[5] P Liu, J Sun, J Zhao, et al.. Microvascular imaging using synchrotron radiation[J]. Journal of Synchrotron Radiation, 2010, 17(4): 517-521.

[6] M Shirai, D O Schwenke, H Tsuchimochi, et al.. Synchrotron radiation imaging for advancing our understanding of cardiovascular function [J]. Circulation Research, 2013, 112(1): 209-221.

[7] B Deng, Y Ren, Y Wang, et al.. Full field X-ray nano-imaging at SSRF[C]. SPIE, 2013, 8851: 88511D.

[8] B Dong, F Xu, X Hu, et al.. In situ investigation of the 3D mechanical microstructure at nanoscale: Nano-CT imaging method of local small region in large scale sample[J]. Scientific World Journal, 2014, 2014: 806371.

[9] H Xie, B Deng, G Du, et al.. X-ray biomedical imaging beamline at SSRF[J]. Journal of Instrumentation, 2013, 8(8): C08003.

[10] 戚俊成, 任玉琦, 杜国浩, 等. 基于X射线光栅成像的多衬度显微计算层析系统[J]. 光学学报, 2013, 33(10): 1034001.

    Qi Juncheng, Ren Yuqi, Du Guohao, et al.. Multiple contrast micro-computed tomography system based on X-ray grating imaging[J]. Acta Optica Sinica, 2013, 33(10): 1034001.

[11] N D Cornea, D Silver, P Min. Curve-skeleton properties, applications, and algorithms[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(3): 530-548.

[12] T C Lee, R L Kashyap, C N Chu. Building skeleton models via 3-D medial surface axis thinning algorithms[J]. CVGIP: Graphical Models and Image Processing, 1994, 56(6): 462-478 .

[13] G Borgefors. On digital distance transforms in three dimensions[J]. Computer Vision and Image Understanding, 1996, 64(3): 368-376.

[14] J W Brandt, V R Algazi. Continuous skeleton computation by Voronoi diagram[J]. CVGIP: Image Understanding, 1992, 55(3): 329-338.

[15] N D Cornea, D Silver, X Yuan, et al.. Computing hierarchical curve-skeletons of 3D objects[J]. Visual Computer, 2005, 21(11): 945-955.

[16] T Saito. A sequential thinning algorithm for three dimensional digital pictures using the Euclidean distance transformation[C]. Proceedings of the 9th SCIA, 1995: 507-516.

[17] K Palágyi, E Balogh, A Kuba, et al.. A sequential 3D thinning algorithm and its medical applications[M].// Information Processing in Medical Imaging. Berlin: Springer Berlin Heidelberg, 2001, 2082: 409-415.

[18] C M Ma , M Sonka. A fully parallel 3D thinning algorithm and its applications[J]. Computer Vision and Image Understanding, 1996, 64(3): 420-433.

[19] K Palagyi, A Kuba. A parallel 3D 12-subiteration thinning algorithm[J]. Graphical Models and Image Processing, 1999, 61(4): 199-221.

[20] W Xie, R P Thompson, R Perucchio. A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton[J]. Pattern Recognition, 2003, 36(7): 1529-1544.

[21] T Wang, A Basu. A note on‘a fully parallel 3D thinning algorithm and its applications’[J]. Pattern Recognition Letters, 2007, 28(4): 501-506 .

[22] T Y Kong, A Rosenfeld. Digital-topology - introduction and survey[J]. Computer Vision Graphics and Image Processing, 1989 , 48(3): 357-393.

[23] K Palágyi, G Németh, P Kardos. Topology preserving parallel 3D thinning algorithms[M].// Digital Geometry Algorithms. Berlin: Springer, 2012: 165-188.

[24] J L Hennessy, D A Patterson. Computer Architecture: A Quantitative Approach[M]. Waltham: Elsevier, 2011.

谭海, 王大东, 薛艳玲, 王玉丹, 杨一鸣, 肖体乔. 显微CT血管系统三维结构的骨架细化算法并行化设计实现[J]. 光学学报, 2015, 35(11): 1117003. Tan Hai, Wang Dadong, Xue Yanling, Wang Yudan, Yang Yiming, Xiao Tiqiao. Parallelization of 3D Thinning Algorithm for Extracting Skeleton of Micro-CT Vasculature[J]. Acta Optica Sinica, 2015, 35(11): 1117003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!