红外与激光工程, 2020, 49 (12): 20201063, 网络出版: 2021-01-14   

二维有机-无机杂化钙钛矿非线性光学研究进展(特邀) 下载: 902次

Recent progress in nonlinear optics of 2D organic-inorganic hybrid perovskites (Invited
作者单位
南开大学 材料科学与工程学院,天津 300350
引用该论文

郑昀颢, 韩笑, 徐加良. 二维有机-无机杂化钙钛矿非线性光学研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201063.

Yunhao Zheng, Xiao Han, Jialiang Xu. Recent progress in nonlinear optics of 2D organic-inorganic hybrid perovskites (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201063.

参考文献

[1] Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.

[2] You J W, Bongu S R, Bao Q. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects[J]. Nanophotonics, 2018, 8: 63-97.

[3] Yun Q, Li L, Hu Z. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage[J]. Adv Mater, 2019, 32: 1903826.

[4] Hu F, Fei Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides[J]. Adv Opt Mater, 2019: 1901003.

[5] Cho K, Pak J, Chung S. Recent advances in interface engineering of transition-metal dichalcogenides with organic molecules and polymers[J]. ACS Nano, 2019, 13: 9713-9734.

[6] Li G, Li Y, Liu H. Architecture of graphdiyne nanoscale films[J]. Chem Commun, 2010, 46: 3256-3258.

[7] Li Y, Xu L, Liu H. Graphdiyne and graphyne: from theoretical predictions to practical construction[J]. Chem Soc Rev, 2014, 43: 2572-2586.

[8] Jia Z, Li Y, Zuo Z. Synthesis and properties of 2D carbon—graphdiyne[J]. Acc Chem Res, 2017, 50: 2470-2478.

[9] Wu L, Dong Y, Zhao J. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Adv Mater, 2019, 31: 1807981.

[10] Dong Y, Zhao Y, Chen Y. Graphdiyne-hybridized n-doped TiO2 nanosheets for enhanced visible light photocatalytic activity[J]. J Mater Sci, 2018, 53: 8921-8932.

[11] Xue Z, Zhu M, Dong Y. An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy[J]. Nanoscale, 2019, 11: 11709-11718.

[12] Chakraborty C, Vamivakas N, Englund D. Advances in quantum light emission from 2D materials[J]. Nanophotonics, 2019, 8: 2017-2032.

[13] Caldwell J D, Aharonovich I, Cassabois G. Photonics with hexagonal boron nitride[J]. Nat Rev Mater, 2019, 4: 552-567.

[14] Kanahashi K, Pu J, Takenobu T. 2D materials for large-area flexible thermoelectric devices[J]. Adv Energy Mater, 2019: 1902842.

[15] Khan K, Tareen A K, Aslam M. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications[J]. Nanoscale, 2019, 11: 21622-21678.

[16] Sun J, Choi Y, Choi Y J. 2D–organic hybrid heterostructures for optoelectronic applications[J]. Adv Mater, 2019, 31: 1803831.

[17] Lu S, Zhao C, Zou Y. Third order nonlinear optical property of Bi2Se3[J]. Opt Express, 2013, 21: 2072-2082.

[18] Guo Z, Zhang H, Lu S. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics[J]. Adv Funct Mater, 2015, 25: 6996-7002.

[19] Lu S B, Miao L L, Guo Z N. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Opt Express, 2015, 23: 11183-11194.

[20] Cao R, Wang H D, Guo Z N. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity[J]. Adv Opt Mater, 2019, 7: 1900020.

[21] Wang C, Liu H, Bian G. Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution[J]. Small, 2019, 15: 1906086.

[22] Xue Y, Zhang Q, Wang W. Opening two-dimensional materials for energy conversion and storage: a concept[J]. Adv Energy Mater, 2017, 7: 1602684.

[23] Pang J, Mendes R G, Bachmatiuk A. Applications of 2D MXenes in energy conversion and storage systems[J]. Chem Soc Rev, 2019, 48: 72-133.

[24] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials[J]. Nat Photonics, 2016, 10: 227-238.

[25] Wang M, Cai S, Pan C. Robust memristors based on layered two-dimensional materials[J]. Nat Electron, 2018, 1: 130-136.

[26] Dong R, Lan C, Li F, Yip S. Incorporating mixed cations in quasi-2D perovskites for high-performance and flexible photodetectors[J]. Nanoscale Horiz, 2019, 4: 1342-1352.

[27] Anichini C, Czepa W, Pakulski D. Chemical sensing with 2D materials[J]. Chem Soc Rev, 2018, 47: 4860-4908.

[28] Iannaccone G, Bonaccorso F, Colombo L. Quantum engineering of transistors based on 2D materials heterostructures[J]. Nat Nanotechnol, 2018, 13: 183-191.

[29] Novoselov K S, Mishchenko A, Carvalho A. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353: aac9439.

[30] Shiue R J, Efetov Dmitri K, Grosso G. Active 2D materials for on-chip nanophotonics and quantum optics[J]. Nanophotonics, 2017, 6: 1329-1342.

[31] Stoumpos C C, Kanatzidis M G. Halide perovskites: poor man's high-performance semiconductors[J]. Adv Mater, 2016, 28: 5778-5793.

[32] Wang L, Zhou H, Hu J. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells[J]. Science, 2019, 363: 265-270.

[33] Kostopoulou A, Brintakis K, Nasikas Nektarios K. Perovskite nanocrystals for energy conversion and storage[J]. Nanophotonics, 2019, 8: 1607-1640.

[34] Jeon N J, Na H, Jung E H. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nat Energy, 2018, 3: 682-689.

[35] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358: 745-750.

[36] Dou L, Wong A B, Yu Y. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 2015, 349: 1518-1521.

[37] Zhou B, Yan D. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets[J]. Angew Chem Int Ed, 2019, 58: 15128-15135.

[38] Lu S, Ge Y, Sun Z. Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus[J]. Photon Res, 2016, 4: 286-292.

[39] Song Y, Chen Y, Jiang X. Nonlinear few-layer MXene-assisted all-optical wavelength conversion at telecommunication band[J]. Adv Opt Mater, 2019, 7: 1801777.

[40] Nayak A, Park J, De Mey K. Large hyperpolarizabilities at telecommunication-relevant wavelengths in donor-acceptor-donor nonlinear optical chromophores[J]. ACS Cent Sci, 2016, 2: 954-966.

[41] Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nat Rev Mater, 2017, 2: 17010.

[42] Ye W, Zeuner F, Li X. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nat Commun, 2016, 7: 11930.

[43] Xing C, Jing G, Liang X. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air[J]. Nanoscale, 2017, 9: 8096-8101.

[44] Jiang X, Liu S, Liang W. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH)[J]. Laser Photonics Rev, 2018, 12: 1700229.

[45] Lu L, Tang X, Cao R. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical kerr media with enhanced stability[J]. Adv Opt Mater, 2017, 5: 1700301.

[46] Welford W T. The Principles of Nonlinear Optics[J]. Journal of Modern Optics, 1985, 21(4): 400.

[47] Dalton L R, Harper A W, Ghosn R. Synthesis and processing of improved organic second-order nonlinear optical materials for applications in photonics[J]. Chem Mater, 1995, 7: 1060-1081.

[48] Saleh B E A, Teich M C. Fundamentals of photonics~Wiley[J]. Spie Org, 2007, 45: 87.

[49] Zhang R, Fan J, Zhang X. Nonlinear optical response of organic–onorganic halide perovskites[J]. ACS Photonics, 2016, 3: 371-377.

[50] Xu J, Semin S, Rasing T. Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures[J]. Small, 2015, 11: 1113-1129.

[51] Di Bella S. Second-order nonlinear optical properties of transition metal complexes[J]. Chem Soc Rev, 2001, 30: 355-366.

[52] Li X, Semin S, Estrada L A. Strong optical nonlinearities of self-assembled polymorphic microstructures of phenylethynyl functionalized fluorenones[J]. Chin Chem Lett, 2018, 29: 297-300.

[53] Xu J, Li X, Xiong J. Halide perovskites for nonlinear optics[J]. Adv Mater, 2019, 32: 1806736.

[54] Wang A, Ye J, Humphrey M G. Graphene and carbon-nanotube nanohybrids covalently functionalized by porphyrins and phthalocyanines for optoelectronic properties[J]. Adv Mater, 2018, 30: 1705704.

[55] Zhao M, Peng R, Zheng Q. Broadband optical limiting response of a graphene–PbS nanohybrid[J]. Nanoscale, 2015, 7: 9268-9274.

[56] Zheng C, Lei L, Huang J. Facile control of metal nanoparticles from isolated nanoparticles to aggregated clusters on two-dimensional graphene to form optical limiters[J]. J Mater Chem C, 2017, 5: 11579-11589.

[57] Li X. Design of novel graphdiyne-based materials with large second-order nonlinear optical properties[J]. J Mater Chem C, 2018, 6: 7576-7583.

[58] Shehzadi K, Ayub K, Mahmood T. Theoretical study on design of novel superalkalis doped graphdiyne: A new donor–acceptor (D-π-A) strategy for enhancing NLO response[J]. Appl Surf Sci, 2019, 492: 255-263.

[59] Guo J, Shi R, Wang R. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics[J]. Laser Photonics Rev, 2020: 1900367.

[60] Shi J, Yu P, Liu F. 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical Device[J]. Adv Mater, 2017, 29: 1701486.

[61] Quan C, Lu C, He C. Band alignment of MoTe2/MoS2 nanocomposite films for enhanced nonlinear optical performance[J]. Adv Mater Interfaces, 2019, 6: 1801733.

[62] Tian X, Wei R, Liu M. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser[J]. Nanoscale, 2018, 10: 9608-9615.

[63] Xie Z, Wu Y, Sun X. Ultra-broadband nonlinear optical response of two-dimensional h-BN nanosheets and their hybrid gel glasses[J]. Nanoscale, 2018, 10: 4276-4283.

[64] Zhao G, Zhang F, Wu Y. One-step exfoliation and hydroxylation of boron nitride nanosheets with enhanced optical limiting performance[J]. Adv Opt Mater, 2016, 4: 141-146.

[65] Xu Y, Jiang XF, Ge Y. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics[J]. J Mater Chem C, 2017, 5: 3007-3013.

[66] Shi M, Huang S, Dong N. Donor–acceptor type blends composed of black phosphorus and C60 for solid-state optical limiters[J]. Chem Commun, 2018, 54: 366-369.

[67] Wang K, Szydłowska B M, Wang G. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared[J]. ACS Nano, 2016, 10: 6923-6932.

[68] Wang C, Zhang T, Lin W. Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics[J]. Chem Rev, 2012, 112: 1084-1104.

[69] Niu R J, Zhou W F, Liu Y. Morphology-dependent third-order optical nonlinearity of a 2D Co-based metal–organic framework with a porphyrinic skeleton[J]. Chem Commun, 2019, 55: 4873-4876.

[70] Shi J m, Xu W, Liu Q y. Polynitrile-bridged two-dimensional crystal: Eu(lll) complex with strong fluorescence emission and NLO property[J]. Chem Commun, 2002: 756-757.

[71] Biswal B P, Valligatla S, Wang M. Nonlinear optical switching in regioregular porphyrin covalent organic frameworks[J]. Angew Chem Int Ed, 2019, 58: 6896-6900.

[72] Dong Y, Zhang Y, Li X. Chiral perovskites: promising materials toward next-generation optoelectronics[J]. Small, 2019, 15: 1902237.

[73] Xue J, Yang D, Cai B. Photon-induced reversible phase transition in CsPbBr3 perovskite[J]. Adv Funct Mater, 2019, 29: 1807922.

[74] Hu J, Yan L, You W. Two-dimensional organic–inorganic hybrid perovskites: a new platform for optoelectronic applications[J]. Adv Mater, 2018, 30: 1802041.

[75] Correa Baena J P, Saliba M, Buonassisi T. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358: 739-744.

[76] Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics[J]. Nat Rev Mater, 2019, 4: 4-22.

[77] Li W, Wang Z, Deschler F. Chemically diverse and multifunctional hybrid organic-inorganic perovskites[J]. Nat Rev Mater, 2017, 2: 16099.

[78] Stoumpos C C, Cao D H, Clark D J. Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors[J]. Chem Mater, 2016, 28: 2852-2867.

[79] Nazarenko O, Kotyrba MR, Yakunin S. Guanidinium-formamidinium lead iodide: a layered perovskite-related compound with red luminescence at room temperature[J]. J Am Chem Soc, 2018, 140: 3850-3853.

[80] Koh TM, Shanmugam V, Schlipf J. Nanostructuring mixed-dimensional perovskites: a route toward tunable, efficient photovoltaics[J]. Adv Mater, 2016, 28: 3653-3661.

[81] Saparov B, Mitzi D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chem Rev, 2016, 116: 4558-4596.

[82] Lee H-D, Kim H, Cho H. Efficient ruddlesden–popper perovskite light-emitting diodes with randomly oriented nanocrystals[J]. Adv Funct Mater, 2019, 29: 1901225.

[83] Zheng Y, Niu T, Ran X. Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application[J]. J Mater Chem A, 2019, 7: 13860-13872.

[84] Yu S, Yan Y, Abdellah M. Nonconfinement structure sevealed in Dion–Jacobson type quasi-2D perovskite expedites interlayer charge transport[J]. Small, 2019, 15: 1905081.

[85] Mao L, Ke W, Pedesseau L. Hybrid Dion–Jacobson 2D lead iodide perovskites[J]. J Am Chem Soc, 2018, 140: 3775-3783.

[86] Li Y, Milić J V, Ummadisingu A. Bifunctional organic spacers for formamidinium-based hybrid Dion–Jacobson two-dimensional perovskite solar cells[J]. Nano Lett, 2019, 19: 150-157.

[87] Zhang Y, Wang P, Tang M C. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics[J]. J Am Chem Soc, 2019, 141: 2684-2694.

[88] Soe C M M, Stoumpos C C, Kepenekian M. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance[J]. J Am Chem Soc, 2017, 139: 16297-16309.

[89] Mao L, Stoumpos C C, Kanatzidis M G. Two-dimensional hybrid halide perovskites: principles and promises[J]. J Am Chem Soc, 2019, 141: 1171-1190.

[90] Zimmermann I, Aghazada S, Nazeeruddin M K. Lead and HTM free stable two-dimensional tin perovskites with suitable band gap for solar cell applications[J]. Angew Chem Int Ed, 2019, 58: 1072-1076.

[91] Li X, Hoffman J, Ke W. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4)[J]. J Am Chem Soc, 2018, 140: 12226-12238.

[92] Kim H, Huynh K A, Kim S Y. 2D and quasi-2D halide perovskites: applications and progress[J]. Phys Status Solidi RRL, 2019, 14: 1900435.

[93] Wang N, Cheng L, Ge R. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells[J]. Nat Photonics, 2016, 10: 699-704.

[94] Yuan M, Quan LN, Comin R. Perovskite energy funnels for efficient light-emitting diodes[J]. Nat Nanotechnol, 2016, 11: 872.

[95] Chen Z, Guo Y, Wertz E. Merits and challenges of ruddlesden–popper soft halide perovskites in electro-optics and optoelectronics[J]. Adv Mater, 2019, 31: 1803514.

[96] Yuan Z, Shu Y, Xin Y. Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions[J]. Chem Commun, 2016, 52: 3887-3890.

[97] Mao L, Guo P, Kepenekian M. Structural diversity in white-light-emitting hybrid lead bromide perovskites[J]. J Am Chem Soc, 2018, 140: 13078-13088.

[98] Zhou L, Liao J F, Huang Z G. Intrinsic self-trapped emission in 0D lead-free (C4H14N2)2In2Br10 single crystal[J]. Angew Chem Int Ed, 2019, 58: 15435-15440.

[99] Cortecchia D, Neutzner S, Srimath Kandada A R. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation[J]. J Am Chem Soc, 2017, 139: 39-42.

[100] Jung M H. White-light emission from the structural distortion induced by control of halide composition of two-dimensional perovskites ((C6H5CH2NH3)2PbBr4–xClx)[J]. Inorg Chem, 2019, 58: 6748-6757.

[101] Zhang L, Wu L, Wang K. Pressure-induced broadband emission of 2D organic-inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4[J]. Adv Sci, 2019, 6: 1801628.

[102] Li X, Guo P, Kepenekian M. Small cyclic diammonium cation templated (110)-oriented 2D halide (X = I, Br, Cl) perovskites with white-light emission[J]. Chem Mater, 2019, 31: 3582-3590.

[103] Mitzi D B, Wang S, Feild C A. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets[J]. Science, 1995, 267: 1473-1476.

[104] Mao L, Wu Y, Stoumpos C C. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites[J]. J Am Chem Soc, 2017, 139: 5210-5215.

[105] Li Y Y, Lin C K, Zheng G L. Novel <110>-oriented organic−inorganic perovskite compound stabilized by n-(3-aminopropyl)imidazole with improved optical properties[J]. Chem Mater, 2006, 18: 3463-3469.

[106] Cortecchia D, Yin J, Petrozza A. White light emission in low-dimensional perovskites[J]. J Mater Chem C, 2019, 7: 4956-4969.

[107] Wu Z, Ji C, Sun Z. Broadband white-light emission with a high color rendering index in a two-dimensional organic-inorganic hybrid perovskite[J]. J Mater Chem C, 2018, 6: 1171-1175.

[108] Booker E P, Thomas T H, Quarti C. Formation of long-lived color centers for broadband visible light emission in low-dimensional layered perovskites[J]. J Am Chem Soc, 2017, 139: 18632-18639.

[109] McCall K M, Stoumpos C C, Kontsevoi O Y. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron–phonon coupling[J]. Chem Mater, 2019, 31: 2644-2650.

[110] Jiang F, Yang D, Jiang Y. Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells[J]. J Am Chem Soc, 2018, 140: 1019-1027.

[111] Liu Z, Zhao X, Zunger A. Design of mixed-cation tri-layered Pb-free halide perovskites for optoelectronic applications[J]. Adv Electron Mater, 2019, 5: 1900234.

[112] Vargas B, Ramos E, Pérez-Gutiérrez E. A direct bandgap copper–antimony halide perovskite[J]. J Am Chem Soc, 2017, 139: 9116-9119.

[113] Chai S, Xiong J, Zheng Y. Dielectric phase transition of an A2BX4-type perovskite with a pentahedral to octahedral transformation[J]. Dalton Trans, 2020, 49: 2218-2224.

[114] Shi E, Gao Y, Finkenauer B P. Two-dimensional halide perovskite nanomaterials and heterostructures[J]. Chem Soc Rev, 2018, 47: 6046-6072.

[115] Huo C, Cai B, Yuan Z. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics[J]. Small Methods, 2017, 1: 1600018.

[116] Wang J, Shen H, Li W. The role of chloride incorporation in lead-free 2D perovskite (BA)2SnI4: morphology, photoluminescence, phase transition, and charge transport[J]. Adv Sci, 2019, 6: 1802019.

[117] Hwang B, Lee J S. 2D perovskite-based self-aligned lateral heterostructure photodetectors utilizing vapor deposition[J]. Adv Opt Mater, 2019, 7: 1801356.

[118] Chen J, Wang Y, Gan L. Generalized self-doping engineering towards ultrathin and large-sized two-dimensional homologous perovskites[J]. Angew Chem Int Ed, 2017, 56: 14893-14897.

[119] Chen Z, Wang Y, Sun X. Remote phononic effects in epitaxial Ruddlesden–Popper halide perovskites[J]. J Phys Chem Lett, 2018, 9: 6676-6682.

[120] Milot R L, Sutton R J, Eperon G E. Charge-carrier dynamics in 2D hybrid metal–halide perovskites[J]. Nano Lett, 2016, 16: 7001-7007.

[121] Li J, Wang J, Ma J. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals[J]. Nat Commun, 2019, 10: 806.

[122] Li H, Lu J, Zhang T. Cation-assisted restraint of a wide quantum well and interfacial charge accumulation in two-dimensional perovskites[J]. ACS Energy Lett, 2018, 3: 1815-1823.

[123] Guo R, Zhu Z, Boulesbaa A. Synthesis and photoluminescence properties of 2D phenethylammonium lead bromide perovskite nanocrystals[J]. Small Methods, 2017, 1: 1700245.

[124] Fang H H, Adjokatse S, Shao S. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites[J]. Nat Commun, 2018, 9: 243.

[125] Long G, Jiang C, Sabatini R. Spin control in reduced-dimensional chiral perovskites[J]. Nat Photonics, 2018, 12: 528-533.

[126] Guan J, Zhang C, Gao D. Drastic photoluminescence modulation of an organic molecular crystal with high pressure[J]. Mater Chem Front, 2019, 3: 1510-1517.

[127] Smith M D, Karunadasa H I. White-light emission from layered halide perovskites[J]. Acc Chem Res, 2018, 51: 619-627.

[128] Aharon S, Etgar L. Two dimensional organometal halide perovskite nanorods with tunable optical properties[J]. Nano Lett, 2016, 16: 3230-3235.

[129] Cao Y, Wang N, Tian H. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 2018, 562: 249-253.

[130] Lee J W, Dai Z, Han T H. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells[J]. Nat Commun, 2018, 9: 3021.

[131] Cao D H, Stoumpos C C, Yokoyama T. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper (CH3(CH2)3NH3)2(CH3NH3)n−1SnnI3n+1 perovskites[J]. ACS Energy Lett, 2017, 2: 982-990.

[132] Chen Q, Wu J, Ou X. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561: 88-93.

[133] Wang J, Li J, Lan S. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors[J]. ACS Nano, 2019, 13: 5473-5484.

[134] Dohner E R, Jaffe A, Bradshaw L R. Intrinsic white-light emission from layered hybrid perovskites[J]. J Am Chem Soc, 2014, 136: 13154-13157.

[135] Thouin F, Valverde-Chávez D A, Quarti C. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites[J]. Nat Mater, 2019, 18: 349-356.

[136] Yangui A, Garrot D, Lauret J S. Optical investigation of broadband white-light emission in self-assembled organic-inorganic perovskite (C6H11NH3)2PbBr4[J]. J Phys Chem C, 2015, 119: 23638-23647.

[137] Thirumal K, Chong W K, Xie W. Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton–phonon coupling to the organic framework[J]. Chem Mater, 2017, 29: 3947-3953.

[138] Mao L, Wu Y, Stoumpos C C. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10–xClx[J]. J Am Chem Soc, 2017, 139: 11956-11963.

[139] Ji C, Wang S, Li L. The first 2D hybrid perovskite ferroelectric showing broadband white-light emission with high color rendering index[J]. Adv Funct Mater, 2019, 29: 1805038.

[140] Huang B, Chen W C, Li Z. Manipulation of molecular aggregation states to realize polymorphism, AIE, MCL, and TADF in a single molecule[J]. Angew Chem Int Ed, 2018, 57: 12473-12477.

[141] Zhang Y L, Ran Q, Wang Q. High-efficiency red organic light-emitting diodes with external quantum efficiency close to 30% based on a novel thermally activated delayed fluorescence emitter[J]. Adv Mater, 2019, 31: 1902368.

[142] Hu H, Meier F, Zhao D. Efficient room-temperature phosphorescence from organic–inorganic hybrid perovskites by molecular engineering[J]. Adv Mater, 2018, 30: 1707621.

[143] An Z, Zheng C, Tao Y. Stabilizing triplet excited states for ultralong organic phosphorescence[J]. Nat Mater, 2015, 14: 685.

[144] Ben Haj Salah M, Mercier N, Allain M. Dual phosphorescence from the organic and inorganic moieties of 1D hybrid perovskites of the PbBr4n′+2 series (n′= 2, 3, 4, 5)[J]. J Mater Chem C, 2019, 7: 4424-4433.

[145] Bolton O, Lee K, Kim H J. Activating efficient phosphorescence from purely organic materials by crystal design[J]. Nat Chem, 2011, 3: 205-210.

[146] Zheng H, Liu G, Zhu L. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition[J]. Adv Energy Mater, 2018, 8: 1800051.

[147] Ding C, Zhang Y, Liu F. Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells[J]. Nano Energy, 2018, 53: 17-26.

[148] Yuan C, Li X, Semin S. Chiral lead halide perovskite nanowires for second-order nonlinear optics[J]. Nano Lett, 2018, 18: 5411-5417.

[149] Wang J, Fang C, Ma J. Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection[J]. ACS Nano, 2019, 13: 9473-9481.

[150] Xing C, Huang W, Xie Z. Ultrasmall bismuth quantum dots: facile liquid-phase exfoliation, characterization, and application in high-performance UV–Vis photodetector[J]. ACS Photonics, 2018, 5: 621-629.

[151] Xie Z, Xing C, Huang W. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability[J]. Adv Funct Mater, 2018, 28: 1705833.

[152] Fan T, Xie Z, Huang W. Two-dimensional non-layered selenium nanoflakes: facile fabrications and applications for self-powered photo-detector[J]. Nanotechnology, 2019, 30: 114002.

[153] Huang W, Xie Z, Fan T. Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions[J]. J Mater Chem C, 2018, 6: 9582-9593.

[154] Huang L, Dong B, Guo X. Waveguide-integrated black phosphorus photodetector for mid-infrared applications[J]. ACS Nano, 2019, 13: 913-921.

[155] Brenner T M, Egger D A, Kronik L. Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties[J]. Nat Rev Mater, 2016, 1: 15007.

[156] Qi X, Zhang Y, Ou Q. Photonics and optoelectronics of 2D metal-halide perovskites[J]. Small, 2018, 14: 1800682.

[157] Zhang Y, Liu Y, Xu Z. Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector[J]. J Mater Chem C, 2019, 7: 1584-1591.

[158] Li L, Sun Z, Wang P. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector[J]. Angew Chem Int Ed, 2017, 56: 12150-12154.

[159] Tan Z, Wu Y, Hong H. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector[J]. J Am Chem Soc, 2016, 138: 16612-16615.

[160] Qian L, Sun Y, Sun M. 2D perovskite microsheets for high-performance photodetectors[J]. J Mater Chem C, 2019, 7: 5353-5358.

[161] Xie Z, Zhang F, Liang Z. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide[J]. Photon Res, 2019, 7: 494-502.

[162] Wu L, Xie Z, Lu L. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion[J]. Adv Opt Mater, 2018, 6: 1700985.

[163] Xing C, Xie Z, Liang Z. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics[J]. Adv Opt Mater, 2017, 5: 1700884.

[164] Dean J J, van Driel H M. Graphene and few-layer graphite probed by second-harmonic generation: theory and experiment[J]. Phys Rev B, 2010, 82: 125411.

[165] Liu Y, Gao P, Zhang T. Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement[J]. Angew Chem Int Ed, 2019, 58: 1479-1483.

[166] Szydłowska B M, Tywoniuk B, Blau W J. Size-dependent nonlinear optical response of black phosphorus liquid phase exfoliated nanosheets in nanosecond regime[J]. ACS Photonics, 2018, 5: 3608-3612.

[167] Ma W, Lu J, Wan B. Piezoelectricity in multilayer black phosphorus for piezotronics and nanogenerators[J]. Adv Mater, 2020, 32: 1905795.

[168] Skelton J M, Burton L A, Oba F. Chemical and lattice stability of the tin sulfides[J]. J Phys Chem C, 2017, 121: 6446-6454.

[169] Xin C, Zheng J, Su Y. Few-layer tin sulfide: a new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility[J]. J Phys Chem C, 2016, 120: 22663-22669.

[170] Sarkar A S, Mushtaq A, Kushavah D. Liquid exfoliation of electronic grade ultrathin tin(II) sulfide (SnS) with intriguing optical response[J]. npj 2D Mater Appl, 2020, 4: 1.

[171] Wang H, Qian X. Giant optical second harmonic generation in two-dimensional multiferroics[J]. Nano Lett, 2017, 17: 5027-5034.

[172] Ferrando A, Martínez Pastor J P, Suárez I. Toward metal halide perovskite nonlinear photonics[J]. J Phys Chem Lett, 2018, 9: 5612-5623.

[173] Dong R, Zhang T, Feng X. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chem Rev, 2018, 118: 6189-6235.

[174] Geng D, Yang H Y. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides[J]. Adv Mater, 2018, 30: 1800865.

[175] Lukatskaya M R, Mashtalir O, Ren C E. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341: 1502-1505.

[176] Lim D, Suh H, Suryawanshi M. Kinetically controlled growth of phase-pure SnS absorbers for thin film solar cells: achieving efficiency near 3% with long-term stability using an SnS/CdS heterojunction[J]. Adv Energy Mater, 2018, 8: 1702605.

[177] Franken P A, Hill A E, Peters C W. Generation of optical harmonics[J]. Phys Rev Lett, 1961, 7: 118-119.

[178] Duan Y, Ju C, Yang G. Aggregation induced enhancement of linear and nonlinear optical emission from a hexaphenylene derivative[J]. Adv Funct Mater, 2016, 26: 8968-8977.

[179] Xu J, Semin S, Niedzialek D. Self-assembled organic microfibers for nonlinear optics[J]. Adv Mater, 2013, 25: 2084-2089.

[180] Chervy T, Xu J, Duan Y. High-efficiency second-harmonic generation from hybrid light-matter states[J]. Nano Lett, 2016, 16: 7352-7356.

[181] Boyd R W, Masters B R. Nonlinear optics, third edition[J]. Journal of Biomedical Optics, 2009, 14(2): 029902.

[182] Timurdogan E, Poulton C V, Byrd M J. Electric field-induced second-order nonlinear optical effects in silicon waveguides[J]. Nat Photonics, 2017, 11: 200-206.

[183] Xu J, Semin S, Cremers J. Controlling microsized polymorphic architectures with distinct linear and nonlinear optical properties[J]. Adv Opt Mater, 2015, 3: 948-956.

[184] Xiong J, Li X, Yuan C. Wavelength dependent nonlinear optical response of tetraphenylethene aggregation-induced emission luminogens[J]. Mater Chem Front, 2018, 2: 2263-2271.

[185] Wang S, Yao Y, Kong J. Highly efficient white-light emission in a polar two-dimensional hybrid perovskite[J]. Chem Commun, 2018, 54: 4053-4056.

[186] Shi P P, Tang Y Y, Li P F. Symmetry breaking in molecular ferroelectrics[J]. Chem Soc Rev, 2016, 45: 3811-3827.

[187] Qin J, Huang F, Li X. Enhanced second harmonic generation from ferroelectric HfO2-based hybrid metasurfaces[J]. ACS Nano, 2019, 13: 1213-1222.

[188] Liao W Q, Zhang Y, Hu C L. A lead-halide perovskite molecular ferroelectric semiconductor[J]. Nat Commun, 2015, 6: 7338.

[189] Wu Z, Ji C, Li L. Alloying n-butylamine into CsPbBr3 to give a two-dimensional bilayered perovskite ferroelectric material[J]. Angew Chem Int Ed, 2018, 57: 8140-8143.

[190] Tang Y Y, Li P F, Liao W Q. Multiaxial molecular ferroelectric thin films bring light to practical applications[J]. J Am Chem Soc, 2018, 140: 8051-8059.

[191] Li L, Liu X, Li Y. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection[J]. J Am Chem Soc, 2019, 141: 2623-2629.

[192] Han S, Liu X, Liu Y. High-temperature antiferroelectric of lead iodide hybrid perovskites[J]. J Am Chem Soc, 2019, 141: 12470-12474.

[193] Liu C, Mei D, Cao W. Mn-based tin sulfide Sr3MnSn2S8 with a wide band gap and strong nonlinear optical response[J]. J Mater Chem C, 2019, 7: 1146-1150.

[194] Ding F, Nisbet M L, Yu H. Syntheses, structures, and properties of non-centrosymmetric quaternary tellurates BiMTeO6 (M = Al, Ga)[J]. Inorg Chem, 2018, 57: 7950-7956.

[195] Chen J, Hu C L, Mao F F. A facile route to nonlinear optical materials: three-site aliovalent substitution involving one cation and two anions[J]. Angew Chem Int Ed, 2019, 58: 2098-2102.

[196] Strayer M E, Gupta A S, Akamatsu H. Emergent noncentrosymmetry and piezoelectricity driven by oxygen octahedral rotations in n = 2 Dion–Jacobson phase layer perovskites[J]. Adv Funct Mater, 2016, 26: 1930-1937.

[197] Kim H G, Tran T T, Choi W. Two new non-centrosymmetric n = 3 layered Dion-Jacobson perovskites: polar RbBi2Ti2NbO10 and nonpolar CsBi2Ti2TaO10[J]. Chem Mater, 2016, 28: 2424-2432.

[198] Gupta A S, Akamatsu H, Strayer M E. Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered perovskite family, LiRTiO4 (R = rare earths)[J]. Adv Electron Mater, 2016, 2: 1500196.

[199] Wei W J, Jiang X X, Dong L Y. Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets[J]. J Am Chem Soc, 2019, 141: 9134-9139.

[200] Yang C K, Chen W N, Ding Y T. The first 2D homochiral lead iodide perovskite ferroelectrics:[R-and S-1-(4-chlorophenyl)ethylammonium]2PbI4[J]. Adv Mater, 2019, 31: 1808088.

[201] Savoini M, Huber L, Cuppen H. THz generation and detection by fluorenone based organic crystals[J]. ACS Photonics, 2018, 5: 671-677.

[202] Maysonnave J, Huppert S, Wang F. Terahertz generation by dynamical photon drag effect in graphene excited by femtosecond optical pulses[J]. Nano Lett, 2014, 14: 5797-5802.

[203] Chanana A, Zhai Y, Baniya S. Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites[J]. Nat Commun, 2017, 8: 1328.

[204] Weis P, Garcia-Pomar J L, Hh M. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6: 9118-9124.

[205] Haynes A S, Saouma F O, Otieno C O. Phase-change behavior and nonlinear optical second and third harmonic generation of the one-dimensional K(1−x)CsxPSe6 and metastable β-CsPSe6[J]. Chem Mater, 2015, 27: 1837-1846.

[206] Deckers S, Steverlynck J, Willot P. Regioregularity increases second-order nonlinear optical response of polythiophenes in solution[J]. J Phys Chem C, 2015, 119: 18513-18517.

[207] Saouma F O, Stoumpos C C, Wong J. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites[J]. Nat Commun, 2017, 8: 742.

[208] Hanamura E, Nagaosa N, Kumagai M. Quantum wells with enhanced exciton effects and optical non-linearity[J]. Mater Sci Eng, B, 1988, 1: 255-258.

[209] Abdelwahab I, Grinblat G, Leng K. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances[J]. ACS Nano, 2018, 12: 644-650.

[210] Youngblood N, Peng R, Nemilentsau A. Layer-tunable third-harmonic generation in multilayer black phosphorus[J]. ACS Photonics, 2017, 4: 8-14.

[211] Wei Z, Guo D, Thieme J. The importance of relativistic effects on two-photon absorption spectra in metal halide perovskites[J]. Nat Commun, 2019, 10: 5342.

[212] Zhou F, Abdelwahab I, Leng K. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection[J]. Adv Mater, 2019, 31: 1904155.

[213] Zhang W F, Huang Y B, Zhang M S. Optical properties of ferroelectric (Pb, La)(Zr, Ti)O3 thin films grown by pulsed laser deposition[J]. Appl Surf Sci, 2000, 158: 185-189.

[214] Liu W, Li X, Song Y. Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure[J]. Adv Funct Mater, 2018, 28: 1707550.

[215] Wang J, Mi Y, Gao X. Giant nonlinear optical response in 2D perovskite heterostructures[J]. Adv Opt Mater, 2019, 7: 1900398.

[216] Wang L, Li W, Li M. Ultrastable amine, sulfo cofunctionalized graphene quantum dots with high two-photon fluorescence for cellular imaging[J]. ACS Sustainable Chem Eng, 2018, 6: 4711-4716.

[217] Zhu X, Xu H, Liu Y. Two-photon up-conversion photoluminescence realized through spatially extended gap states in quasi-2D perovskite films[J]. Adv Mater, 2019, 31: 1901240.

[218] Saouma F O, Stoumpos C C, Kanatzidis M G. Multiphoton absorption order of CsPbBr3 as determined by wavelength-dependent nonlinear optical spectroscopy[J]. J Phys Chem Lett, 2017, 8: 4912-4917.

[219] Sharma D, Malik BP, Gaur A. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots[J]. J Phys Chem Solids, 2015, 87: 163-170.

[220] Friese D H, Bast R, Ruud K. Five-photon absorption and selective enhancement of multiphoton absorption processes[J]. ACS Photonics, 2015, 2: 572-577.

[221] Xiang J, Cai X, Lou X. Biocompatible green and red fluorescent organic dots with remarkably large two-photon action cross sections for targeted cellular imaging and real-time intravital blood vascular visualization[J]. ACS Appl Mater Interfaces, 2015, 7: 14965-14974.

[222] Feng R, Sun Y, Tian M. A membrane-permeable dye for living cells with large two-photon excited fluorescence action cross-sections for bioimaging[J]. J Mater Chem B, 2015, 3: 8644-8649.

[223] Horton N G, Wang K, Kobat D. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nat Photonics, 2013, 7: 205-209.

[224] Mushtaq A, Kushavah D, Ghosh S. Nonlinear optical properties of benzylamine lead(II) bromide perovskite microdisks in femtosecond regime[J]. Appl Phys Lett, 2019, 114: 051902.

[225] Manzi A, Tong Y, Feucht J. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals[J]. Nat Commun, 2018, 9: 1518.

[226] Lu S, Zhou F, Zhang Q. Layered hybrid perovskites for highly efficient three-photon absorbers: theory and experimental observation[J]. Adv Sci, 2019, 6: 1801626.

[227] Chen W, Bhaumik S, Veldhuis S A. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals[J]. Nat Commun, 2017, 8: 15198.

[228] Bhaumik S, Veldhuis S A, Ng Y F. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles[J]. Chem Commun, 2016, 52: 7118-7121.

[229] Zhu B H, Zhang H C, Zhang J Y. Surface-related two-photon absorption and refraction of CdSe quantum dots[J]. Appl Phys Lett, 2011, 99: 021908.

[230] Zhu B H, Zhang H C, Zhang Z Y. Effect of shell thickness on two-photon absorption and refraction of colloidal CdSe/CdS core/shell nanocrystals[J]. Appl Phys Lett, 2011, 99: 231903.

[231] Zheng Q, Zhu H, Chen S C. Frequency-upconverted stimulated emission by simultaneous five-photon absorption[J]. Nat Photonics, 2013, 7: 234-239.

[232] Chen H, Wang F, Liu M. Near-infrared broadband polymer-dot modulator with high optical nonlinearity for ultrafast pulsed lasers[J]. Laser Photonics Rev, 2019, 13: 1800326.

[233] Li P, Chen Y, Yang T. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers[J]. ACS Appl Mater Interfaces, 2017, 9: 12759-12765.

[234] Hong S, Lédée F, Park J. Mode-locking of all-fiber lasers operating at both anomalous and normal dispersion regimes in the C-and L-bands using thin film of 2D perovskite crystallites[J]. Laser Photonics Rev, 2018, 12: 1800118.

[235] Zhang H, Liao Q, Wu Y. Two-dimensional Ruddlesden–Popper perovskites microring laser array[J]. Adv Mater, 2018, 30: 1706186.

[236] Gu Z, Wang K, Sun W. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers[J]. Adv Opt Mater, 2016, 4: 472-479.

[237] Wei Q, Du B, Wu B. Two-photon optical properties in individual organic-inorganic perovskite microplates[J]. Adv Opt Mater, 2017, 5: 1700809.

[238] Zhang Y, Lim C-K, Dai Z. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities[J]. Phys Rep, 2019, 795: 1-51.

[239] Yu H, Peng Y, Yang Y. Plasmon-enhanced light–matter interactions and applications[J]. npj Comput Mater, 2019, 5: 45.

[240] Shang Q, Zhang S, Liu Z. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires[J]. Nano Lett, 2018, 18: 3335-3343.

[241] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nat Photonics, 2012, 6: 737-748.

[242] Xie Z, Duo Y, Lin Z. The rise of 2D photothermal materials beyond graphene for clean water production[J]. Adv Sci, 2020, 7: 1902236.

[243] Xie Z, Wang D, Fan T. Black phosphorus analogue tin sulfide nanosheets: synthesis and application as near-infrared photothermal agents and drug delivery platforms for cancer therapy[J]. J Mater Chem B, 2018, 6: 4747-4755.

[244] Chen J, Fan T, Xie Z. Advances in nanomaterials for photodynamic therapy applications: Status and challenges[J]. Biomaterials, 2020, 237: 119827.

郑昀颢, 韩笑, 徐加良. 二维有机-无机杂化钙钛矿非线性光学研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201063. Yunhao Zheng, Xiao Han, Jialiang Xu. Recent progress in nonlinear optics of 2D organic-inorganic hybrid perovskites (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201063.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!