红外与激光工程, 2020, 49 (12): 20201063, 网络出版: 2021-01-14   

二维有机-无机杂化钙钛矿非线性光学研究进展(特邀) 下载: 901次

Recent progress in nonlinear optics of 2D organic-inorganic hybrid perovskites (Invited
作者单位
南开大学 材料科学与工程学院,天津 300350
图 & 表

图 1. Derivation of 2D halide perovskites from the parental cubic perovskite lattice of 3D layered halide perovskites by cutting the latter along typical crystallographic planes: (100), (110), and (111)通过沿着晶体学平面(100),(110)和(111)切割经典的三维层状卤化钙钛矿的立方晶格衍生得到二维卤化钙钛矿

Fig. 1.

下载图片 查看原文

图 2. Schematic illustration showing the crystalline structure of 2D perovskites (n = 1 and 2, where n represents the metal halide lattices), mixed-dimensionality perovskites and 3D perovskites (n = ∞)[80]二维钙钛矿(n = 1和2,其中n代表金属卤化物晶格),混维钙钛矿和三维钙钛矿(n =∞)的晶体结构示意图[80]

Fig. 2.

下载图片 查看原文

图 3. Structural comparison among the n = 3 crystal structures of the R-P phase, D-J phase, and ACI phase 2D perovskites: (A, E, I) (PEA)2(MA)2Pb3I10; (B, F, J) (BA)2(MA)2Pb3I10; (C, G, K) (3AMP)2(MA)2Pb3I10; and (D, H, L) (GA)(MA)3Pb3I10[89]R-P相,D-J相和ACI相二维钙钛矿的n= 3晶体结构比较:(A, E, I) (PEA)2(MA)2Pb3I10;(B, F, J) (BA)2(MA)2Pb3I10;(C, G, K) (3AMP)2(MA)2Pb3I10;(D, H, L) (GA)(MA)3Pb3I10[89]

Fig. 3.

下载图片 查看原文

图 4. Structural drawings of the 2D perovskites [benzimidazolium]2SnI4 (a) and [benzodiimidazolium]SnI4 (b) Perpendicular to the stacking direction. The d-spacing between the single perovskite sheets indicated. The corresponding diffraction patterns of the 2D perovskites spin-coated on glass substrates are shown undernea[90]. View of the unit cells of the (GA)(MA)nPbnI3n+1 (n = 1−3) perovskites along (c) Crystallographic b-axis and (d) Crystallographic a-axis highlighting the ordered crystal packing of the GA and MA cations between the perovskite layers[88]垂直于堆叠方向的二维钙钛矿[benzimidazolium]2SnI4 (a)和[benzodiimidazolium]SnI4(b)的结构图。单个钙钛矿片之间的d间距已标出。下方显示了旋涂在玻璃基板上的二维钙钛矿的相应衍射图样[90]。(GA)(MA)nPbnI3n+1 (n = 1−3)钙钛矿的晶胞沿(c)结晶b轴和(d)结晶a轴的视图[88]

Fig. 4.

下载图片 查看原文

图 5. (a) Blue-light emission from (BZA)2PbBr4 powdered polycrystalline sample and white-light emission from the (BZA)2PbBr4−xClx (x = 1.5, 2, 3, 3.5, 4) perovskite series under UV excitation at λex = 365 or 254 nm; (b) Diffuse reflectance spectra and band gaps of the solid powder of the (BZA)2PbBr4−xClx perovskite (x = 4, 3.5, 3, 2, 1.5, 0) series. Structural geometry of (c) (BZA)2PbBr4 and (d) (BZA)2PbCl4. Bond distances of (e) Pb−Br and (f) Pb−Cl for PbBr62− and PbCl62−octahedra, respectively[100](a)在紫外线激发下(BZA)2PbBr4粉状多晶样品的蓝光发射和(BZA)2PbBr4−xClx (x = 1.5, 2, 3, 3.5, 4)钙钛矿系列的白光发射。λex = 365或254 nm;(b) (BZA)2PbBr4−xClx钙钛矿(x = 4, 3.5, 3, 2, 1.5, 0)系列固体粉末的漫反射光谱和带隙;(c) (BZA)2PbBr4;(d)(BZA)2PbCl4的几何结构。PbBr62−和PbCl62−八面体的Pb-Br键距(e)和Pb-Cl的键距(f)[100]

Fig. 5.

下载图片 查看原文

图 6. (a) Schematic plot of the Cl-addition-induced transformation from the 0D dimer phase of A3Sb2I9 to the 2D layered phase of A3Sb2ClxI9−x[104]; (b) Schematic representation of different structural types of corrugated (110)-oriented members of the 2D perovskite family[110]; (c) (111)-oriented perovskite family with general formula, An+1BnX3n+3, which can be obtained by cutting along the (111)-direction of the 3D parent structure. Panels (a) and (b) show the crystal structures of Cs4CuSb2Cl12 and α-Cs3Sb2Cl9. Cl and Cs atoms are depicted as green and purple spheres, respectively; Sb and Cu coordination polyhedra are shown in gray and blue, respectively[112](a)从A3Sb2I9的0维二聚体相到A3Sb2ClxI9−x.的二维层状相的Cl加成诱导转变示意图[104];(b)二维钙钛矿各族波纹状(110)取向排列的不同结构类型示意图[110];(c)具有通式An+1BnX3n+3的(111)取向钙钛矿家族,可以通过沿三维母体结构的(111)方向切割而获得;(a)和(b)显示Cs4CuSb2Cl12和α-Cs3Sb2Cl9的晶体结构。绿色和紫色的球体分别代表Cl和Cs原子;灰色和蓝色分别代表Sb和Cu配位多面体[112]

Fig. 6.

下载图片 查看原文

图 7. (a) Crystal structure ; (b) Fluorescence microscopy images of the CdCl2-4HP crystals; (c) Prompt (blue line) and delayed (red line) PL spectra of CdCl2-4HP excited under 365 nm at room temperature; (d) Time-resolved PL decay profiles (416 nm) of CdCl2-4HP at room temperature with a long lifetime of 103.12 ms[37]; (e) Crystallographic structure of the chiral perovskites as obtained from single crystal XRD measurements, showing the features of chirality, DMSO intercalation, and partial edge sharing; (f) Normalized DRS (diffusive reflectance spectrum) and fluorescence spectra of the as-prepared (R-MPEA)1.5PbBr3.5(DMSO)0.5 nanowires. Excitation wavelength: 400 nm; (g) Normalized CD spectra of the films spin-coated from DMF solutions of the R- and S-(MPEA)1.5PbBr3.5(DMSO)0.5 perovskite crystals. Average film thickness for both R- and S- (MPEA)1.5PbBr3.5(DMSO)0.5 is ~ 350 nm[148]; (h), (I) Circularly polarized PL emission of (S)-α-(PEA)2PbI4 and (R)-α-(PEA)2PbI4 crystals. (J) Optical switching characteristic of the (R)-α-(PEA)2PbI4 device under a 520 nm monochromatic σ and σ+ illumination at a bias of −3 V[149](a)CdCl2-4HP晶体的晶体结构; (b)荧光显微镜图像; (c)在室温下在365 nm处激发的CdCl2-4HP的即时(蓝线)和延迟(红线) PL光谱; (d) CdCl2-4HP在室温下的时间分辨PL衰减曲线(416 nm),具有103.12 ms的长寿命[37]; (e)从单晶XRD测量获得的手性钙钛矿的晶体结构,显示出手性,DMSO嵌入和部分边缘共享的特征; (f)所制备的(R-MPEA)1.5PbBr3.5(DMSO)0.5纳米线的归一化DRS (漫反射光谱)和荧光光谱。激发波长:400 nm; (g)从R-S-(MPEA)1.5PbBr3.5(DMSO)0.5钙钛矿晶体的DMF溶液旋涂的薄膜的CD光谱[148]; (h),(i)(S)-α-(PEA)2PbI4和(R)-α-(PEA)2PbI4晶体的圆极化PL发射; (j)(R)-α-(PEA)2PbI4器件在偏压为−3 V的520 nm单色σ−和σ+照明下的光学开关特性[149]

Fig. 7.

下载图片 查看原文

图 8. (A) Temperature dependent SHG signals of (C4H9NH3)2CsPb2Br7. Inset: Crystal structures of (C4H9NH3)2CsPb2Br7 at different temperatures. At 293 K: (b) viewed along the crystallographic b-axis and (c) the perovskite framework. The arrows indicate the relative displacements along the crystallographic c-axis. At 420 K: (d) highly symmetric structure packing and (E) perovskite framework[189](a)(C4H9NH3)2CsPb2Br7的温度依赖性SHG信号。插图表示(C4H9NH3)2CsPb2Br7在不同温度下的晶体结构。在293 K:(b)沿结晶b轴观察,(c)钙钛矿骨架。箭头表示沿c轴的相对位移;在420 K:(d)高度对称的结构堆积和(e)钙钛矿骨架[189]

Fig. 8.

下载图片 查看原文

图 9. (a) Polar SHG intensity plots of the 2D [(C6H5CH2NH3)2]PbCl4 perovskite nanosheets. (b) SHG intensity anisotropy (Ic-axis/Ib-axis) dependent on the thickness of the measured nanosheets[199](a)二维[(C6H5CH2NH3)2]钙钛矿纳米片的极性SHG强度图;(b)SHG强度各向异性(Ic-axis/Ib-axis)取决于所测量的纳米片的厚度[199]

Fig. 9.

下载图片 查看原文

图 10. (a) Normalized NLO spectra of a (R-MPEA)1.5PbBr3.5(DMSO)0.5 nanowire pumped at various wavelengths; (b) SHG intensity from a horizontally oriented (R-MPEA)1.5PbBr3.5(DMSO)0.5 nanowire as function of the linear polarization angle as tuned by the λ/2 plate;(c) Schematics of the NLO measurements; (d) SHG intensity from the nanowire as function of the rotation angle of the λ/4 plate. The pump was left-handed circularly polarized when the rotation angle was 45° and 225°, and was right-handed circularly polarized when the rotation angle was 135° and 315°, as indicated by the arrows [148](a)以各种波长泵浦的(R-MPEA)1.5PbBr3.5(DMSO)0.5纳米线的归一化NLO光谱;(b)来自水平取向的((R-MPEA)1.5PbBr3.5(DMSO)0.5纳米线的SHG强度与由λ/2波片调谐的线性极化角的关系; (c) NLO测试示意图;(d)纳米线的SHG强度是λ/4波片旋转角的函数。如箭头所示,当旋转角为45°和225°时,泵为左旋圆极化,当旋转角为135°和315°时,泵为右旋圆极化[148]

Fig. 10.

下载图片 查看原文

图 11. (a) 2PL images of the perovskite flake without (top panel) and with (bottom panel) SiO2 microsphere under an excitation power of 0.1 mW, respectively; (b) 2PL spectra for a bare perovskite flake (w/o MS, green curve) and a perovskite-microsphere hybrid dielectric structure (w/t MS, red curve). The SiO2 microsphere shows no emission within this waveband (black curve)[214](a)在0.1 mW的激发功率下,不带(上图)和带(下图)SiO2微球的钙钛矿片的2PL图像;(b)钙钛矿裸片(不带MS,绿色曲线)和钙钛矿-微球混合介电结构(不带MS,红色曲线)的2PL光谱。SiO2微球在该波段内没有发射(黑色曲线)[214]

Fig. 11.

下载图片 查看原文

表 1

2D perovskites for NLO

二维钙钛矿的非线性光学

Table1.

2D perovskites for NLO

二维钙钛矿的非线性光学

Chemical formulaMetalHalogenOrganic ligandPhaseNLO propertyReference
(2meptH2)PbBr4PbBr2-methyl-1,5-diaminopentaneR-PSHG185
(C4H9NH3)2CsPb2Br7PbBrC4H9NH3R-PSHG189
[CH3(CH2)3NH3]2(CH3NH3)Pb2Br7PbBrCH3(CH2)3NH3, CH3NH3R-PSHG191
(BA)2(EA)2Pb3I10PbIn-butylammonium, ethylammonium R-PSHG192
[(C6H5CH2NH3)2]PbCl4PbClC6H5CH2NH3R-PSHG199
R/S-(MPEA)1.5PbBr3.5(DMSO)0.5PbBrmethylphenethylamine-SHG148
[R/S-LIPF]2PbI4PbIR/S-1-(4-chlorophenyl)ethylammonium R-PSHG200
(C6H5C2H4NH3)2PbI4PbIC6H5C2H4NH3R-PTHz203
(CH3(CH2)3NH3)2(CH3NH3)n-1PbnI3n+1PbICH3(CH2)3NH3, CH3NH3R-PTHG207
(C4H9NH3)2PbBr4PbBrC4H9NH3R-PTHG209
(C4H9NH3)2PbI4PbIC4H9NH3R-PTHG209
(C4H9NH3)2(CH3NH3)Pb2I7PbIC4H9NH3, CH3NH3R-PTHG209
(C4H9NH3)2(CH3NH3)2Pb3I10PbIC4H9NH3, CH3NH3R-PTHG209
(C4H9NH3)2(NH2CHNH2)Pb2Br7PbBrC4H9NH3, NH2CHNH2R-P2PA213
(PEA)2PbI4PbIphenethylamineR-P2PA214
(BA)2PbI4/(BA)2MAPb2I7) PbIn-C4H9NH3R-P2PA215
(PEA)2(MA)4Pb5Br16PbBrphenethylamine, methylammoniumR-P2PL217
(C4H9NH3)2PbBr4PbBrC4H9NH3R-P3PA226
(OA)2PbBr4PbBroctyl ammoniumR-P5PA227
(C6H5C2H4NH3)2PbI4PbIC6H5C2H4NH3R-PSA234
(BA)2(MA)n−1PbnBr3n+1PbBrn-C4H9NH3, methylammonium R-PSA235

查看原文

郑昀颢, 韩笑, 徐加良. 二维有机-无机杂化钙钛矿非线性光学研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201063. Yunhao Zheng, Xiao Han, Jialiang Xu. Recent progress in nonlinear optics of 2D organic-inorganic hybrid perovskites (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201063.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!