强激光与粒子束, 2016, 28 (9): 090201, 网络出版: 2016-09-14   

节瘤缺陷激光损伤的研究进展

Research progress of laser-induced damage of nodular defects
作者单位
1 同济大学 先进微结构材料教育部重点实验室, 上海 200092
2 同济大学 物理科学与工程学院, 精密光学工程技术研究所, 上海 200092
摘要
在近红外反射类激光薄膜中, 节瘤缺陷是引起薄膜激光损伤的主要因素。为了提高激光薄膜的损伤阈值, 对节瘤缺陷及其损伤特性进行研究具有重要意义。从“真实”节瘤缺陷和“人工”节瘤缺陷两个方面介绍节瘤缺陷的研究进展。基于“真实”节瘤缺陷的研究, 建立了节瘤缺陷的结构特征, 形成了节瘤缺陷损伤特性和损伤机制的初步认识, 利用时域有限差分法(FDTD)模拟了电场增强, 初步解释了节瘤缺陷的损伤机制, 发明了抑制节瘤缺陷种子源的方法和激光预处理技术, 减少了节瘤缺陷, 提高了薄膜损伤阈值。但是“真实”节瘤缺陷的性质, 如种子源尺寸、吸收性以及位置深度等, 都难以控制和预测, 难以开展节瘤缺陷损伤特性的系统和量化研究, 致使关于节瘤缺陷损伤的科学认识尚有不足。基于“人工”节瘤缺陷的研究, 可以实现节瘤缺陷损伤特性的系统、量化甚至单一因素研究, 极大地提高了实验研究的效率和可靠性, 获得了一系列定量损伤规律。“人工”节瘤缺陷的高度受控性使实验研究与理论模拟的可靠对比成为可能, “人工”节瘤缺陷的损伤形貌和FDTD电场模拟的直接比较实验不仅验证了时域有限差分法(FDTD)模拟电场的正确性, 也进一步明确了电场增强是诱导节瘤缺陷损伤的主要机制。对节瘤缺陷的损伤机制有了更为深刻的认识后, 人们开始调控节瘤缺陷的电场增强效应提高节瘤缺陷的损伤阈值, 发展了宽角度反射薄膜技术和节瘤缺陷平坦化技术, 抑制电场增强, 提高损伤阈值。这扩展了控制节瘤缺陷的思路和方法, 从原来单一的去除节瘤缺陷到调控节瘤缺陷, 为进一步提高薄膜的损伤阈值开辟了新的方向和途径。
Abstract
In near infrared high reflectors, nodular defects are the main factor inducing the laser damage of optical coatings. In order to improve the laser-induced damage threshold (LIDT) of the optical coatings, it is necessary to study the damage characteristics of nodules. In this paper, the studies on laser-induced damage of nodular defects is reviewed from two aspects: the real nodules and the artificial nodules. For real nodules, the geometries of nodular defects were established and the preliminary understanding of the damage mechanisms of nodular defects was achieved. The finite-difference time-domain (FDTD) technique has been successfully used to simulate the electric-field intensity enhancement in nodules, which helps to explain the damage mechanism of nodules. The experimental methods of eliminating the seeds and laser conditioning have been proposed to control nodular defects and to improve LIDT. However, the properties of real nodules, such as the diameters, absorption and lodging depth of seeds, are quite diverse and very difficult to predict, control and reproduce. This makes the systematical and quantitative study of nodular damage quite challenging, and the understanding of the nodular damage mechanisms is still insufficient. Artificial nodules offered the opportunity to study their damage behaviors systematically, quantitatively or even in a single factor manner, which greatly improved the efficiency and reliability of the experimental studies. In addition, a direct comparison between the experimental results and theoretical simulation results could be achieved using the well-controlled artificial nodules. The damage morphologies of artificial nodules were almost the same with the FDTD simulated electric-field intensity distributions, which not only demonstrates the correctness of the simulated results but also further illustrates that the electric field enhancement is the main mechanism of inducing nodular damage. After having a deeper understanding of the nodular damage mechanisms, the broadband coating and planarization technique have been used to suppress the electric field enhancement and to improve the LIDT of nodules. This extends the ideas and methods dealing with nodular defects, from solely removing nodular defects to controlling nodular defects, which opens up new directions for improving the LIDT of laser coatings.
参考文献

[1] Staggs M C, Balooch M, Kozlowski M R, et al. In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings[C]//Proc of SPIE. 1992, 1624: 375-385.

[2] Bloembergen N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J].Applied Optics, 1973, 12(4): 661-664.

[3] Kozlowski M R, Chow R. Role of defects in laser damage of multilayer coatings[C]///Proc of SPIE. 1994, 2114: 640-649.

[4] Ledger A M. Inhomogeneous interface laser mirror coatings[J].Applied Optics, 1979, 18(17): 2979-2989.

[5] Guenther K H. Nodular defects in dielectric multilayers and thick single layers[J].Applied Optics, 1981, 20(6): 1034-1038.

[6] Brett M J, Tait R N, Dew S K, et al. Nodular defect growth in thin films[J]. Journal of Materials Science: Materials in Electronics, 1992, 3(1): 64-70.

[7] Stolz C J, Tench R J, Kozlowski M R, et al. Comparison of nodular defect seed geometries from different deposition techniques[C]//Proc of SPIE. 1996, 2714: 374-382.

[8] Dubost L, Rhallabi A, Perrin J, et al. Growth of nodular defects during film deposition[J].Journal of Applied Physics, 1995, 78(6): 3784-3791.

[9] Letts S A, Myers D W, Witt L A. Ultrasmooth plasma polymerized coatings for laser fusion targets[J].Journal of Vacuum Science & Technology, 1981, 19(3): 739-742.

[10] Cheng X, Shen Z, Jiao H, et al. Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors[J]. Applied Optics, 2011, 50(9): C357-C363.

[11] Liu X, Li D, Zhao Y, et al. Further investigation of the characteristics of nodular defects[J].Applied Optics, 2010, 49(10): 1774-1779.

[12] Staggs M C, Kozlowski M R, Siekhaus W J, et al. Correlation of damage threshold and surface geometry of nodular defects on HR coatings as determined by in-situ atomic force microscopy[C]//Proc of SPIE. 1993, 1848: 234-242.

[13] Liao B, Smith D J, McIntyre B. The formation and development of nodular defects in optical coatings[C]//Laser Induced Damage in Optical Materials. 1985, 746: 305-318.

[14] Bodemann A, Kaiser N, Kozlowski M R, et al. Comparison between 355 and 1064-nm damage of high-grade dielectric mirror coatings[C]//Proc of SPIE. 1996, 2714: 395-404.

[15] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proc of SPIE. 1999, 3578: 387-397.

[16] Murphy J K. Effects of surface and thin-film anomalies on miniature infrared filters[C]//Proc of SPIE. 1980, 246: 64-82.

[17] DeFord J F, Kozlowski M R. Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings[C]//Proc of SPIE. 1993, 1848: 455-472.

[18] Stolz C J, Genin F Y, Pistor T V. Electric-field enhancement by nodular defects in multilayer coatings irradiated at normal and 45° incidence[C]//Proc of SPIE. 2004, 5273: 41-49.

[19] Stolz C J, Feit M D, Pistor T V. Laser intensification by spherical inclusions embedded within multilayer coatings[J].Applied Optics, 2006, 45(7): 1594-1601.

[20] Stolz C J, Hafeman S, Pistor T V. Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm[J].Applied Optics, 2008, 47(13): C162-C166.

[21] Gruzdev V E, Gruzdeva A S. Resonance increase of high-power laser field with nodule defects in multilayer optical coatings: Theory and simulation[C]//Proc of SPIE. 1998, 3263: 169-176.

[22] DiJon J, Garrec P, Kaiser N, et al. Influence of substrate cleaning on LIDT of 355 nm HR coatings[C]//Proc of SPIE. 1997, 2966: 178-186.

[23] Bennett J M. How to clean surfaces[C]//Proc of SPIE. 2004, 5273: 195-206.

[24] Shen Z, Ding T, Ye X, et al. Influence of cleaning process on the laser-induced damage threshold of substrates[J].Applied Optics, 2011, 50(9): C433-C440.

[25] Rigatti A L. Cleaning process versus laser-damage threshold of coated optical components[C]//Proc of SPIE. 2005, 5647: 136-140.

[26] Stolz C J, Sheehan L M, Von Gunten M K, et al. Advantages of evaporation of hafnium in a reactive environment for manufacture of high-damage-threshold multilayer coatings by electron-beam deposition[C]//Proc of SPIE. 1999, 3738: 318-324.

[27] Chow R, Tsujimoto N. Silicon dioxide and hafnium dioxide evaporation characteristics from a high-frequency sweep e-beam system[J].Applied Optics, 1996, 35(25): 5095-5101.

[28] Bercegol H. What is laser conditioning: A review focused on dielectric multilayers[C]//Proc of SPIE. 1999, 3578: 421-426.

[29] 单永光, 刘晓凤, 贺洪波, 等. 光学薄膜中节瘤缺陷研究进展[J]. 强激光与粒子束, 2011, 23(6): 1421-1429. (Shan Yongguang, Liu Xiaofeng, He Hongbo, et al. Research progress of nodular defect in optical coatings. High Power Laser and Particle Beams, 2011, 23(6) : 1421-1429)

[30] Shan Y G, He H B, Wang Y, et al. Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm[J].Optics Communications, 2011, 284(2): 625-629.

[31] Poulingue M, DiJon J, Rafin B, et al. Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold[C]//Proc of SPIE. 1999, 3738: 325-336.

[32] Poulingue M, Ignat M, Dijon J. The effects of particle pollution on the mechanical behaviour of multilayered systems[J].Thin Solid Films, 1999, 348(1): 215-221.

[33] Wei C, Yi K, Fan Z, et al. Influence of composition and seed dimension on the structure and laser damage of nodular defects in HfO2/SiO2 high reflectors[J]. Applied Optics, 2012, 51(28): 6781-6788.

[34] Cheng X, Ding T, He W, et al. Using engineered nodules to study laser-induced damage in optical thin films with nanosecond pulses[C]//Proc of SPIE. 2011: 819002.

[35] Cheng X, Tuniyazi A, Zhang J, et al. Nanosecond laser-induced damage of nodular defects in dielectric multilayer mirrors[J].Applied Optics, 2014, 53(4): A62-A69.

[36] Cheng X, Zhang J, Ding T, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J].Light: Science & Applications, 2013, 2(6): e80.

[37] Cheng X, Tuniyazi A, Wei Z, et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J].Optics Express, 2015, 23(7): 8609-8619.

[38] Stolz C J, Wolfe J E, Adams J J, et al. High laser-resistant multilayer mirrors by nodular defect planarization[J].Applied Optics, 2014, 53(4): A291-A296.

[39] Stolz C J, Wolfe J E, Mirkarimi P B, et al. Substrate and coating defect planarization strategies for high-laser-fluence multilayer mirrors[J].Thin Solid Films, 2015.

[40] Stolz C J, Wolfe J E, Mirkarimi P B, et al. Depth determination of critical fluence-limiting defects within planarized and non-planarized mirror coatings[C]//Proc of SPIE. 2015: 96271C.

谢凌云, 程鑫彬, 张锦龙, 焦宏飞, 马彬, 丁涛, 沈正祥, 王占山. 节瘤缺陷激光损伤的研究进展[J]. 强激光与粒子束, 2016, 28(9): 090201. Xie Lingyun, Cheng Xinbin, Zhang Jinlong, Jiao Hongfei, Ma Bin, Ding Tao, Shen Zhengxiang, Wang Zhanshan. Research progress of laser-induced damage of nodular defects[J]. High Power Laser and Particle Beams, 2016, 28(9): 090201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!