光学学报, 2021, 41 (3): 0315002, 网络出版: 2021-02-28   

数据驱动的空间目标图像信息感知技术 下载: 858次

Data-Driven Awareness Technology for Space Target Image Information
作者单位
1 太原理工大学物理与光电工程学院, 山西 太原 030024
2 太原理工大学新型传感器与智能控制教育部(山西省)重点实验室, 山西 太原 030024
3 中国人民财产保险股份有限公司太原市分公司, 山西 太原 030001
引用该论文

杨小姗, 潘雪峰, 苏少杰, 贾鹏. 数据驱动的空间目标图像信息感知技术[J]. 光学学报, 2021, 41(3): 0315002.

Xiaoshan Yang, Xuefeng Pan, Shaojie Su, Peng Jia. Data-Driven Awareness Technology for Space Target Image Information[J]. Acta Optica Sinica, 2021, 41(3): 0315002.

参考文献

[1] 张己化, 姚东升, 谈斌. 地基光电系统空间目标探测影响因素分析[J]. 光学学报, 2008, 28(6): 1178-1182.

    Zhang J H, Yao D S, Tan B. Analysis on effect factors of ground-based electro-optic system detection ability on space object[J]. Acta Optica Sinica, 2008, 28(6): 1178-1182.

[2] 左超, 冯世杰, 张翔宇, 等. 深度学习下的计算成像: 现状、挑战与未来[J]. 光学学报, 2020, 40(1): 0111003.

    Zuo C, Feng S J, Zhang X Y, et al. Deep learning based computational imaging: status, challenges, and future[J]. Acta Optica Sinica, 2020, 40(1): 0111003.

[3] 鞠默然, 罗江宁, 王仲博, 等. 融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13): 1315002.

    Ju M R, Luo J N, Wang Z B, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2020, 40(13): 1315002.

[4] 孙迎春, 潘树国, 赵涛, 等. 基于优化YOLOv3算法的交通灯检测[J]. 光学学报, 2020, 40(12): 1215001.

    Sun Y C, Pan S G, Zhao T, et al. Traffic light detection based on optimized YOLOv3 algorithm[J]. Acta Optica Sinica, 2020, 40(12): 1215001.

[5] KrizhevskyA, SutskeverI, Hinton GE. ImageNet classification with deep convolution neural networks[C]∥Proceedings of the 25th International Conference on Neural Information Processing Systems(NIPS), December 3-6, 2012. Lake Tahoe, Nevada, United States. New York: Curran Associates, 2012, 1: 1097- 1105.

[6] GirshickR, DonahueJ, DarrellT, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2014. Columbus, OH, USA.New York: IEEE Press, 2014: 580- 587.

[7] GirshickR. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015. Santiago, Chile.New York: IEEE Press, 2015: 1440- 1448.

[8] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

[9] RedmonJ, DivvalaS, GirshickR, et al.You only look once: unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 27-30, 2016. Las Vegas, NV, USA. New York: IEEE Press, 2016: 779- 788.

[10] LiuW, AnguelovD, ErhanD, et al. SSD: single shot MultiBox detector[M] ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer, 2016, 9905: 21- 37.

[11] RedmonJ, FarhadiA. YOLO9000: better, faster, stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017. Honolulu, HI, USA. New York: IEEE Press, 2017: 6517- 6525.

[12] RedmonJ, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. ( 2018-04-08)[2019-12-05]. https:∥arxiv.org/abs/1804. 02767.

[13] 王柳. 基于深度学习的空间多目标识别方法研究[J]. 无人系统技术, 2019( 3): 49- 55.

    WangL. Research on spatial multi-objective recognition based on deep learning[J]. Unmanned Systems Technology, 2019( 3): 49- 55.

[14] 王文竹, 李智, 来嘉哲, 等. 基于数据驱动的空间目标智能识别[J]. 指挥与控制学报, 2019, 5(1): 25-30.

    Wang W Z, Li Z, Lai J Z, et al. Space objects intelligent identification based on the data-driven method[J]. Journal of Command and Control, 2019, 5(1): 25-30.

[15] NeubeckA, Van GoolL. Efficient non-maximum suppression[C]∥18th International Conference on Pattern Recognition (ICPR'06), August 20-24, 2006. Hong Kong, China.New York: IEEE Press, 2006: 850- 855.

[16] He KM, Zhang XY, Ren SQ, et al.Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016. Las Vegas, NV, USA.New York: IEEE Press, 2016: 770- 778.

[17] Lin TY, DollárP, GirshickR, et al.Feature pyramid networks for object detection[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017. Honolulu, HI, USA.New York: IEEE Press, 2017: 936- 944.

[18] Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.

[19] 孙成明, 袁艳, 吕群波. 天基空间目标光学散射特性建模与验证[J]. 光学学报, 2019, 39(11): 1129001.

    Sun C M, Yuan Y, Lü Q B. Modeling and verification of space-based optical scattering characteristics of space objects[J]. Acta Optica Sinica, 2019, 39(11): 1129001.

[20] 汪夏, 张雅声, 徐灿, 等. 空间目标褶皱材质BRDF建模方法[J]. 光学学报, 2019, 39(10): 1024001.

    Wang X, Zhang Y S, Xu C, et al. Bidirectional reflectance distribution function modeling approach of space objects' fold material[J]. Acta Optica Sinica, 2019, 39(10): 1024001.

[21] 刘程浩, 李智, 徐灿, 等. 基于深度神经网络的空间目标常用材质BRDF模型[J]. 光学学报, 2017, 37(11): 1129001.

    Liu C H, Li Z, Xu C, et al. BRDF model for commonly used materials of space targets based on deep neural network[J]. Acta Optica Sinica, 2017, 37(11): 1129001.

[22] Jia P, Cai D M, Wang D, et al. Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer[J]. Monthly Notices of the Royal Astronomical Society, 2015, 447(4): 3467-3474.

[23] Jia P, Cai D M, Wang D, et al. Real-time generation of atmospheric turbulence phase screen with non-uniform fast Fourier transform[J]. Monthly Notices of the Royal Astronomical Society, 2015, 450(1): 38-44.

杨小姗, 潘雪峰, 苏少杰, 贾鹏. 数据驱动的空间目标图像信息感知技术[J]. 光学学报, 2021, 41(3): 0315002. Xiaoshan Yang, Xuefeng Pan, Shaojie Su, Peng Jia. Data-Driven Awareness Technology for Space Target Image Information[J]. Acta Optica Sinica, 2021, 41(3): 0315002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!