中国激光, 2017, 44 (7): 0703023, 网络出版: 2017-07-05   

抽运波长对中红外超连续谱影响的数值模拟

Numerical Simulation of Effect of Pump Wavelength on Mid-Infrared Supercontinuum
作者单位
1 陕西师范大学物理学与信息技术学院, 陕西 西安 710119
2 西安邮电大学电子工程学院, 陕西 西安 710121
摘要
采用数值模拟研究了飞秒脉冲在悬吊芯As2S3微结构光纤中传输时, 抽运波长对中红外超连续谱产生的影响。通过分步傅里叶算法数值求解广义非线性薛定谔方程, 对不同抽运波长的飞秒脉冲在悬吊芯As2S3微结构光纤中传输时的传输特性及演化过程进行分析。模拟结果表明, 当抽运波长为2300 nm时, 处于光纤的反常色散区且近零色散波长, 可获得宽带且平坦的中红外超连续谱, 光谱范围覆盖1.2~7 μm; 当抽运波长为2500 nm时, 处于光纤的反常色散区且远离零色散波长, 可获得超宽带中红外超连续谱, 光谱范围覆盖1.2~7.5 μm, 但其平坦度略差。该结果对产生中红外超连续谱时选择合适的激光抽运波长, 进而优化中红外超连续谱具有重要的参考价值。
Abstract
Numerical simulation is used to study the effect of pump wavelength on mid-infrared supercontinuum generation when femtosecond pulse is transmitted in As2S3 suspended-core microstructure optical fiber. The transmission characteristics and evolution process of femtosecond pulse with different pump wavelengths in As2S3 suspended-core microstructure optical fiber are analyzed by using split-step Fourier method to solve the generalized nonlinear Schrdinger equation numerically. The analytical results demonstrate that the flatter and wider mid-infrared supercontinuum of 1-7 μm can be obtained when the pump wavelength is 2300 nm, locating in anomalous dispersion region and closing to zero dispersion wavelength. And the wider mid-infrared supercontinuum of 1-7.5 μm can be obtained when the pump wavelength is 2500 nm, locating in anomalous dispersion region and keeping away from zero dispersion wavelength. But the flatness of mid-infrared supercontinuum with 2500 nm is slightly worse. This study has a significant reference value for selecting pump wavelength and optimizing mid-infrared supercontinuum.
参考文献

[1] Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24(11): 592-594.

[2] 刘 昆, 师红星, 刘 江, 等. 基于类噪声脉冲抽运的高功率全光纤中红外超连续谱光源[J]. 中国激光, 2015, 42(9): 0902003.

    Liu Kun, Shi Hongxing, Liu Jiang, et al. All-fiber mid-infrared supercontinuum generation pumped by noise-like pulses[J]. Chinese J Lasers, 2015, 42(9): 0902003.

[3] 朱 磊, 王鹿鹿, 董新永, 等. 基于高掺锗石英光纤的中红外超连续谱产生[J]. 光学学报, 2016, 36(3): 0319001.

    Zhu Lei, Wang Lulu, Dong Xinyong, et al. Mid-infrared supercontinuum generation with highly germanium-doped silica fiber[J]. Acta Optica Sinica, 2016, 36(3): 0319001.

[4] Miao Lili, Yi Jun, Wang Qingkai, et al. Broadband third order nonlinear optical responses of bismuth telluride nanosheets[J]. Optical Materials Express, 2016, 6(7): 2244-2251.

[5] 王莹莹, 戴世勋, 罗宝华, 等. 硫系光纤红外超连续谱输出研究进展[J]. 激光与光电子学进展, 2016, 53(9): 090005.

    Wang Yingying, Dai Shixun, Luo Baohua, et al. Progress in infrared supercontinuum generation in chalcogenide glass fiber[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090005.

[6] 施伟华, 王梦艳. 三零色散光子晶体光纤中超连续谱的产生与控制[J]. 中国激光, 2015, 42(8): 0805009.

    Shi Weihua, Wang Mengyan. Generation and control of supercontinuum in photonic crystal fiber with three-zero dispersion wavelengths[J]. Chinese J Lasers, 2015, 42(8): 0805009.

[7] Du J, Zhang M, Guo Z, et al. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers[J]. Scientific Reports, 2017, 7: 42357. DOI: 10.1038/srep42357.

[8] Chu Z, Liu J, Guo Z, et al. 2 μm passively Q-switched laser based on black phosphorus[J]. Optical Materials Express, 2016, 6(7): 2374.

[9] Morioka T, Mori K, Kawanishi S, et al. Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers[J]. IEEE Photonics Technology Letters, 1994, 6(3): 365-368.

[10] Nakasyotani T, Toda H, Kuri T, et al. Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source[J]. Journal of Lightwave Technology, 2006, 24(1): 404-410.

[11] Rolfe P. In vivo near-infrared spectroscopy[J]. Annual Review of Biomedical Engineering, 2000, 2(2): 715-754.

[12] Monnier J D. Optical interferometry in astronomy[J]. Reports on Progress in Physics, 2003, 66: 789-857.

[13] Shaw L B, Nguyen V Q, Sanghera J s, et al. IR supercontinuum generation in As-Se photonic crystal fiber[J]. Advanced Solid-State Photonics, 2005: 864-868.

[14] Roy S, Chaudhuri P R. Supercontinuum generation in visible to mid-infrared region in square-lattice photonic crystal fiber made from highly nonlinear glasses[J]. Optics Communications, 2009, 282(17): 3448-3455.

[15] El-Amraoui M, Fatome J, Jules J C, et al. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers[J]. Optics Express, 2010, 18(5): 4547-4556.

[16] El-Amraoui M, Gadret G, Jules J C, et al. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources[J]. Optics Express, 2010, 18(25): 26655-26665.

[17] Hu Xiaohong, Zhang Wei, Yang Zhi, et al. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Optics Letters, 2011, 36(14): 2659-2661.

[18] Gao Weiqing, Xu Qiang, Li Xue, et al. Supercontinuum generation in a step-index chalcogenide fiber with AsSe2 core and As2S5 cladding[J]. Japanese Journal of Applied Physics, 2016, 55(12): 122201.

[19] 于永芹, 阮双琛, 曾剑春, 等. 泵浦波长对光子晶体光纤产生超连续谱的影响[J]. 光子学报, 2005, 34(9): 1293-1296.

    Yu Yongqin, Ruan Shuangchen, Zeng Jianchun, et al. Supercontinuum generation in photonic crystal fibers depends on pump wavelengths[J]. Acta Photonica Sinica, 2005, 34(9): 1293-1296.

[20] Agrawal G P. Nonlinear fiber optics[M].[S.l.]: Elsevier Incorporated, 1989: 26-50.

[21] Kohoutek T, Yan X, Shiosaka T W, et al. Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers[J]. Journal of the Optical Society of America B, 2011, 28(9): 2284-2290.

[22] Granzow N, Stark S P, Schmidt M A, et al. Supercontinuum generation in chalcogenide-silica step-index fibers[J]. Optics Express, 2011, 19(21): 21003-21010.

[23] Nishizawa N, Goto T. Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zero dispersion wavelength[J]. Optics Express, 2002, 10(21): 1151-1160.

[24] Wadsworth W J, Joly N, Knight J C, et al. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres[J]. Optics Express, 2004, 12(2): 299-309.

[25] Lehtonen M, Genty G, Ludvigsen H, et al. Supercontinuum generation in a highly birefringent microstructured fiber[J]. Applied Physics Letters, 2003, 82(14): 2197-2199.

高鹏飞, 李晓辉, 罗文峰, 邹德峰, 柴通, 庞星星. 抽运波长对中红外超连续谱影响的数值模拟[J]. 中国激光, 2017, 44(7): 0703023. Gao Pengfei, Li Xiaohui, Luo Wenfeng, Zou Defeng, Chai Tong, Pang Xingxing. Numerical Simulation of Effect of Pump Wavelength on Mid-Infrared Supercontinuum[J]. Chinese Journal of Lasers, 2017, 44(7): 0703023.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!