激光与光电子学进展, 2017, 54 (12): 121405, 网络出版: 2017-12-11   

基于多模激光抽运的1.70 μm波段拉曼增益谱实验研究 下载: 576次

Raman Gain Spectrum in 1.70 μm Band Pumped by Multimode Laser
作者单位
1 长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学光电工程学院, 吉林 长春 130022
引用该论文

都权力, 张鹏, 吴迪, 贾青松. 基于多模激光抽运的1.70 μm波段拉曼增益谱实验研究[J]. 激光与光电子学进展, 2017, 54(12): 121405.

Du Quanli, Zhang Peng, Wu Di, Jia Qingsong. Raman Gain Spectrum in 1.70 μm Band Pumped by Multimode Laser[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121405.

参考文献

[1] Obi H, Murashima K, Tanaka M, et al. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

[2] Horton N G, Wang K, Demirhan K, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.

[3] Nguyen T N, Kieu K, Churin D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.

[4] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

[5] Workman J, Weyer L. Practical guide to interpretive near-infrared spectroscopy[M]. Florida: CRC Press, Inc., 2007.

[6] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]. 19th Optoelectronics and Communication Conference (OECC) and 39th Australian Conference on Optical Fibre Technology (ACOFT), 2014: 410-411.

[7] Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dy∶chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

[8] Quimby R S, Saad M. Dy∶fluoroindate fiber laser at 4.5 μm with cascade lasing[C]. Advanced Solid State Lasers Congress, 2013: AM2A.7

[9] Yamada M, Ono H, Ohta K, et al. 1.7 μm band optical fiber amplifier[C]. Optical Fiber Communications Conference and Exhibition, 2014: 1-3.

[10] Li Z, Alam S U, Daniel J M O, et al. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]. European Conference on Optical Communication, 2014: 1-3.

[11] 张岩, 张鹏, 刘鹏, 等. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002.

    Zhang Yan, Zhang Peng, Liu Peng, et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.

[12] Quan Z, Gao C, Guo H, et al. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 2015, 5: 12034.

[13] Daniel J M, Tokurakawa M, Ibsen M, et al. Ultra-short wavelength operation of a two-micron thulium fiber laser[C]. CLEO: Science and Innovations, 2014: SW1N.2.

[14] Li Z, Jung Y, Daniel J M O, et al. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]. Optical Fiber Communications Conference and Exhibition, 2015: 1-3.

[15] Abeeluck A K, Headley C, Jrgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser[J]. Optics Letters, 2004, 29(18): 2163-2165.

[16] Kawagoe H, Ishida S, Aramaki M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932.

[17] Dong P, Gui L, Xiao X, et al. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission[J]. Optics Communications, 2009, 282(14): 3007-3011.

[18] Xue G, Zhang B, Yin K, et al. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[C]. SPIE, 2015, 9255: 92550U.

[19] Dianov E M, Firstov S V, Alyshev S V, et al. A new bismuth-doped fibre laser, emitting in the range 1625-1775 nm[J]. Quantum Electronics, 2014, 44(6): 503-504.

[20] Agrawal G P. Nonlinear fiber optics[M]. California: Academic Press, 2007.

[21] Long Q, Wu T, Hu S, et al. Threshold characteristics of forward-pumped fiber Raman amplifier[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030603.

[22] Wang G, Zhan L, Liu J, et al. Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser[J]. Optics Letters, 2013, 38(1): 19-21.

[23] Hua X, Leng J, Yang H, et al. Highly efficient Raman conversion in O2, pumped by a seeded narrow band second-harmonic Nd∶YAG laser[J]. Applied Physics B, 2005, 81(4): 525-530.

[24] Shi J, Ouyang M, Chen X, et al. Stimulated Raman scattering enhanced by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(7): 977-979.

[25] Zhan L, Kuang Q, Gu Z, et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 2015, 33(2): 391-395.

[26] Kuang Q, Zhan L, Wang Z, et al. Up to the 1552nd order passively harmonic mode-locked Raman fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2205-2208.

[27] 王振宝, 邵碧波, 张磊, 等. 光纤受激布里渊散射阈值分析与实验研究[J]. 激光与光电子学进展, 2011, 48(9): 090603.

    Wang Zhenbao, Shao Bibo, Zhang Lei, et al. Analysis and measurement of stimulated Brillouin scattering threshold in fiber[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090603.

[28] 张蕾, 王肇颖, 贾东方. 不同光纤组合中产生的超连续谱研究[J]. 光通信技术, 2009, 33(8): 39-41.

    Zhang Lei, Wang Zhaoying, Jia Dongfang. Studies on supercontinuum generation in different fiber compositions by using self-made sub-picosecond pulse[J]. Optical Communication Technology, 2009, 33(8): 39-41.

[29] 朱俊梅, 张伟利, 饶云江, 等. 低阈值随机分布反馈光纤激光器的输出特性[J]. 中国激光, 2013, 40(3): 0302007.

    Zhu Junmei, Zhang Weili, Rao Yunjiang, et al. Output characteristics of low-threshold random distributed feedback fiber laser[J]. Chinese J Lasers, 2013, 40(3): 0302007.

都权力, 张鹏, 吴迪, 贾青松. 基于多模激光抽运的1.70 μm波段拉曼增益谱实验研究[J]. 激光与光电子学进展, 2017, 54(12): 121405. Du Quanli, Zhang Peng, Wu Di, Jia Qingsong. Raman Gain Spectrum in 1.70 μm Band Pumped by Multimode Laser[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121405.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!