激光与光电子学进展, 2017, 54 (12): 121405, 网络出版: 2017-12-11   

基于多模激光抽运的1.70 μm波段拉曼增益谱实验研究 下载: 576次

Raman Gain Spectrum in 1.70 μm Band Pumped by Multimode Laser
作者单位
1 长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学光电工程学院, 吉林 长春 130022
摘要
1.70 μm波段光源在生物医疗、红外光源产生等方面具有巨大的应用前景, 1.70 μm波段增益谱研究是近年来的热点。为避免受激布里渊散射, 采用自制多模光纤激光器作为拉曼抽运源, 经1550 nm/1650 nm波分复用器抽运高非线性光纤和色散位移光纤产生拉曼增益谱。首先分析了多模激光抽运产生增益谱的原理, 然后通过实验分析不同功率下各种长度高非线性光纤、色散位移光纤组合产生的前向谱和后向谱。实验结果表明, 1 km长高非线性光纤和6 km长色散位移光纤的组合可得到输出功率最大、峰值波长接近1700 nm的后向增益谱, 这为实现1.70 μm波段连续激光器和超快激光器提供了技术参考。
Abstract
1.70 μm band laser sources have larger applications in many fields, such as biomedical medicine, infrared light generation and so on; the gain spectrum in 1.70 μm band is an international hotspot. A home-made multimode fiber laser is applied as the Raman pump in order to avoid stimulated Brillouin scattering. The pumped signal is injected into the high nonlinear fiber (HNLF) and dispersion shifted fiber (DSF) through 1550 nm/1650 nm wavelength division multiplex (WDM). Firstly, the principle of generating gain spectrum using the multimode laser is analyzed. Then, the forward and backward spectra are analyzed, these spectra are produced by HNLF and DSF with different lengths under the condition of different powers. The results show that, 1 km long HNLF and 6 km long DSF can be used to obtain the best backward gain spectrum with maximum power and peak wavelength of near 1700 nm. The experimental results provide technical reference for 1.70 μm band continuous wave lasers and ultrafast lasers.
参考文献

[1] Obi H, Murashima K, Tanaka M, et al. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

[2] Horton N G, Wang K, Demirhan K, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.

[3] Nguyen T N, Kieu K, Churin D, et al. High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 μm[J]. IEEE Photonics Technology Letters, 2013, 25(19): 1893-1896.

[4] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

[5] Workman J, Weyer L. Practical guide to interpretive near-infrared spectroscopy[M]. Florida: CRC Press, Inc., 2007.

[6] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy[C]. 19th Optoelectronics and Communication Conference (OECC) and 39th Australian Conference on Optical Fibre Technology (ACOFT), 2014: 410-411.

[7] Quimby R S, Shaw L B, Sanghera J S, et al. Modeling of cascade lasing in Dy∶chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 2008, 20(2): 123-125.

[8] Quimby R S, Saad M. Dy∶fluoroindate fiber laser at 4.5 μm with cascade lasing[C]. Advanced Solid State Lasers Congress, 2013: AM2A.7

[9] Yamada M, Ono H, Ohta K, et al. 1.7 μm band optical fiber amplifier[C]. Optical Fiber Communications Conference and Exhibition, 2014: 1-3.

[10] Li Z, Alam S U, Daniel J M O, et al. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]. European Conference on Optical Communication, 2014: 1-3.

[11] 张岩, 张鹏, 刘鹏, 等. 1.7 μm波段光纤光源研究进展及其应用[J]. 激光与光电子学进展, 2016, 53(9): 090002.

    Zhang Yan, Zhang Peng, Liu Peng, et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090002.

[12] Quan Z, Gao C, Guo H, et al. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 2015, 5: 12034.

[13] Daniel J M, Tokurakawa M, Ibsen M, et al. Ultra-short wavelength operation of a two-micron thulium fiber laser[C]. CLEO: Science and Innovations, 2014: SW1N.2.

[14] Li Z, Jung Y, Daniel J M O, et al. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]. Optical Fiber Communications Conference and Exhibition, 2015: 1-3.

[15] Abeeluck A K, Headley C, Jrgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser[J]. Optics Letters, 2004, 29(18): 2163-2165.

[16] Kawagoe H, Ishida S, Aramaki M, et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932.

[17] Dong P, Gui L, Xiao X, et al. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission[J]. Optics Communications, 2009, 282(14): 3007-3011.

[18] Xue G, Zhang B, Yin K, et al. All-fiber wavelength-tunable Tm/Ho-codoped laser between 1727 nm and 2030 nm[C]. SPIE, 2015, 9255: 92550U.

[19] Dianov E M, Firstov S V, Alyshev S V, et al. A new bismuth-doped fibre laser, emitting in the range 1625-1775 nm[J]. Quantum Electronics, 2014, 44(6): 503-504.

[20] Agrawal G P. Nonlinear fiber optics[M]. California: Academic Press, 2007.

[21] Long Q, Wu T, Hu S, et al. Threshold characteristics of forward-pumped fiber Raman amplifier[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030603.

[22] Wang G, Zhan L, Liu J, et al. Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser[J]. Optics Letters, 2013, 38(1): 19-21.

[23] Hua X, Leng J, Yang H, et al. Highly efficient Raman conversion in O2, pumped by a seeded narrow band second-harmonic Nd∶YAG laser[J]. Applied Physics B, 2005, 81(4): 525-530.

[24] Shi J, Ouyang M, Chen X, et al. Stimulated Raman scattering enhanced by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(7): 977-979.

[25] Zhan L, Kuang Q, Gu Z, et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 2015, 33(2): 391-395.

[26] Kuang Q, Zhan L, Wang Z, et al. Up to the 1552nd order passively harmonic mode-locked Raman fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2205-2208.

[27] 王振宝, 邵碧波, 张磊, 等. 光纤受激布里渊散射阈值分析与实验研究[J]. 激光与光电子学进展, 2011, 48(9): 090603.

    Wang Zhenbao, Shao Bibo, Zhang Lei, et al. Analysis and measurement of stimulated Brillouin scattering threshold in fiber[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090603.

[28] 张蕾, 王肇颖, 贾东方. 不同光纤组合中产生的超连续谱研究[J]. 光通信技术, 2009, 33(8): 39-41.

    Zhang Lei, Wang Zhaoying, Jia Dongfang. Studies on supercontinuum generation in different fiber compositions by using self-made sub-picosecond pulse[J]. Optical Communication Technology, 2009, 33(8): 39-41.

[29] 朱俊梅, 张伟利, 饶云江, 等. 低阈值随机分布反馈光纤激光器的输出特性[J]. 中国激光, 2013, 40(3): 0302007.

    Zhu Junmei, Zhang Weili, Rao Yunjiang, et al. Output characteristics of low-threshold random distributed feedback fiber laser[J]. Chinese J Lasers, 2013, 40(3): 0302007.

都权力, 张鹏, 吴迪, 贾青松. 基于多模激光抽运的1.70 μm波段拉曼增益谱实验研究[J]. 激光与光电子学进展, 2017, 54(12): 121405. Du Quanli, Zhang Peng, Wu Di, Jia Qingsong. Raman Gain Spectrum in 1.70 μm Band Pumped by Multimode Laser[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121405.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!