光子学报, 2016, 45 (2): 0206003, 网络出版: 2016-04-01  

基于相移光纤光栅微分器超短光脉冲整形

Ultrashort Optical Pulse Shaping Based on Phaseshifted Fiber Gratings Differentiators
作者单位
北方工业大学 电子信息工程学院, 北京 100144
摘要
基于耦合模理论和传输矩阵法,对相移光纤光栅的反射谱、相移特性进行了分析.结果表明,相移光纤光栅随着相移点个数的增加,反射谱透射窗口数目增多,相移发生多次跳变,从而形成对信号的微分效应,并且相移的微分阶数与所增加的相移点个数成正比.设计出基于相移光纤光栅微分特性的脉冲整形器,通过优化高斯信号各阶微分的加权系数,将高斯型输入脉冲整形成近似方形或三角形状的输出脉冲,通过调整光纤光栅第一段与第二段的长度比,使输出三角脉冲形状的失真现象得到改善.分析输入的高斯脉冲的脉宽发生±5%的波动时,输出波形依然可以获得很好的三角和平顶方形脉冲效果,从而证明了所设计的脉冲整形器的稳定性和实用性.
Abstract
Based on the transfer matrix method and the couplemode theory, the characteristics of reflective spectrum and phase shift of the phaseshifted fiber Bragg gratings were analyzed. The result showed that the transmission windows in the reflection spectrum increased and the phase jumped frequently with the increasing of the phase points, thus the differential effects on signals were generated. Besides, the phase differential orders were proportional to phaseshift points. On this basis, a pulse shaper was designed based on the characteristics of the differential phase shift grating. By optimizing the weighting factors for each order derivative of the Gaussian input pulse, the output pulse can be formed the shapes of rectangular and triangular. By changing the length ratio of the first section optical fiber grating and the second section, the distorting phenomenon of the triangular output pulse was improved. Finally, changing the Gaussian input pulse width by ±5%,the output waveform were synthesized as rectangular pulse and triangular pulse. Thus the stability and practicality of the pulse shaping system were verified.
参考文献

[1] 李淳飞. 非线性光学[M]. 北京:电子工业出版社, 2009.

[2] FRANCESCA P, PERIKLIS P, MORTEN I, et al. Alloptical pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating[J]. Journal of Lightwave Technology, 2006, 24(1): 357.

[3] 刘琼, 叶青, 蔡海文,等. 基于光纤器件的脉冲整形技术的研究进展[J]. 激光与光电子学进展,2011, 48(12): 120603.

    LIU Qiong, YE Qing, CAI Haiwen, et al. Progress of pulse shaping technology using optical fiber devices[J]. Laser&Optoelectronics Progress, 2011, 48(12): 120603.

[4] IGOR A S, SERGII O I, OLEKSIY V S, et al. Femtosecond parabolic pulse shaping in normally dispersive optical fibers[J].Optics Express, 2013, 21(15): 1776917785.

[5] 姚云华,卢晨晖, 徐淑武,等. 飞秒激光脉冲整形技术及其应用[J]. 物理学报, 2014, 63(18): 184201.

    YAO Yunhua, LU Chenhui, XUE Shuwu, et al. Femtosecond pulse shaping technology and its applications[J]. Acta Physica Sinica, 2014, 63(18):184201.

[6] LI Hongpu, CHEN Xuxing. Energyefficient optical pulse multiplication and shaping based on a triply sampled filter utilizing a fiber bragg grating[J]. Journal of Lightwave Technology, 2015, 33(10): 21672176.

[7] WEINER A M. Ultrafast optical pulse shaping: A tutorial review[J]. Optics Communications, 2011, 284(15):36693692.

[8] LOU Aiping, LUO Zhichao, XU Wencheng, et al. Wavelength switchable flattop allfiber comb filter based on a doubleloop MachZehnder interferometer[J]. Optics Express, 2010, 18(6): 60566063.

[9] DOU Yujie, ZHANG Hongming, YAO Minyu. Multiwavelength pulse generation using flattop optical frequency comb and arrayed waveguide grating[J]. Chinese Optics Letters, 2012, 10(12): 123201123201.

[10] YE Qing, QU Ronghui, FANG Zujie. Generation of millimeterwave subcarrier optical pulse by using a FabryPerot interferometer[J]. Chinese Optics Letters, 2007, 5(1): 810.

[11] ASGHARI M H, AZANA J. Proposal and analysis of a reconfigurable pulse shaping technique based on multiarm optical differentiators[J]. Optics Communications, 2008, 281(18): 4581–4588.

[12] DAVID K, RADAN S, YONGWOO P, et al. Nonlinear pulse compression of picosecond paraboliclike pulses synthesized with a long period fiber grating filter[J]. Optics Express, 2009, 17(9): 70747087.

[13] ZHANG Ailing, LI Changxiu. Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays[J]. Optical Express, 2012,20(21): 2307423081.

[14] MADSEN C K, ZHAO J H. Optical filter design and analysis: a signal processing approach[M]. John Wiley & Sons, New York, 1999.

[15] SILVA H J D, O’REILLY J J. Optical pulse modeling with Hermite–Gaussian functions[J]. Optics Letters, 1989, 14(10): 526528.

[16] 谢海鹤,林振衡, 颜黄苹,等.膜层传输矩阵理论在布拉格光纤光栅分析中的应用[J]. 光子学报,2015,44(11): 1106003.

    XIE Haihe, LIN Zhenheng, YAN Huangping, et al. Fiber bragg grating analyzed by transfer matrix theory of membrane layer[J].Acta Photonica Sinica, 2015,44(11): 1106003.

[17] TURAN E. Fiber Grating Spectra[J]. Journal of Lightwave Technology , 1997, 15(8): 12771294.

[18] MYKOLA K, JOSE A. Design of highorder alloptical temporal differentiators based on multiplephaseshifted fiber Bragg gratings[J]. Optics Express, 2007, 15(10): 61566166.

[19] AZAA J. Ultrafast analog alloptical signal processors based on fibergrating devices[J]. Photonics Journal IEEE. 2010, 2(3):359386.

[20] PARK Y, KULISHOV M, SLAVYK R. Picosecond and subpicosecond flattop pulse generation using uniform longperiod fiber gratings[J]. Optics Express, 2006, 14(26): 1267012678.

[21] 陈金华,方晓惠, 丁志群,等.光纤激光器中基于偏振控制器的脉宽可调平顶光脉冲生成技术[J]. 光子学报, 2014,43(5): 0506006.

    CHEN Jinhua, FANG Xiaohui, DING Zhiqun, et al. Flottop pulse generation with pulse width tunable based on polarization controller in fiber laser[J]. Acta Photonica Sinica,2014,43(5): 0506006.

[22] 张岩, 裴丽, 王一群,等. 基于啁啾FBG的三角形光脉冲发生器的优化设计[J]. 红外与激光工程, 2015, 4(44): 13071309.

    ZHANG Yan, PEI Li, WANG Yiqun, et al. Optimization of optical triangular pulses generator based on chirped fiber Bragg grating[J]. Infrared and Laser Engineering, 2015, 4(44): 13071309.

董小伟, 郭盼, 刘文楷. 基于相移光纤光栅微分器超短光脉冲整形[J]. 光子学报, 2016, 45(2): 0206003. DONG Xiaowei, GUO Pan, LIU Wenkai. Ultrashort Optical Pulse Shaping Based on Phaseshifted Fiber Gratings Differentiators[J]. ACTA PHOTONICA SINICA, 2016, 45(2): 0206003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!