太赫兹科学与电子信息学报, 2017, 15 (2): 253, 网络出版: 2017-06-06  

长脉冲 GW级 HPM大气击穿时间分析

Analysis on atmospheric breakdown time for GW level HPM long pulse
作者单位
信息工程大学信息系统工程学院,河南郑州 450001
摘要
结合电子流体方程与 Maxwell方程组,对单脉冲高功率微波 (HPM)大气击穿过程进行仿真,采用时域有限差分方法 (FDTD)并结合 HPM自生等离子体的特征参数,仿真了不同压强和场强下单脉冲 HPM自生等离子体的参量变化,分析了 HPM频率为 6.4 GHz时,不同场强、压强下的大气击穿时间,并开展了大气击穿实验加以验证。理论分析与实验结果表明,实验与理论分析结果一致,压强与场强的变化对大气击穿时间均有显著影响,原因在于场强和压强对大气击穿种子电子浓度的变化起决定性作用,进而影响大气击穿时间。场强为 kV/cm量级时,大气击穿时间在 10 ns量级,在相同的场强下,随着压强的增大,击穿时间会先减小再增加。相同的大气压强条件下,场强越高,大气击穿时间越短。
Abstract
The process of high power microwave atmospheric breakdown is simulated with the combination of electron fluid equation and Maxwell equation. Using the characteristic parameters of plasma, the Finite Difference Time Domain(FDTD) method is adopted to analyze the atmospheric breakdown of the single pulse High Power Microwave(HPM) under different pressures and electric field intensities, then the time of the atmospheric breakdown is obtained under different pressures and electric fields when the microwave frequency is 6.4 GHz. Theoretical analysis and simulative results show that the change of the pressure and the electric field has a significant effect on the atmospheric breakdown time, because the electron concentration in the atmosphere is dominated by the electric field intensity and pressure. The atmospheric breakdown time is at 10 ns order of magnitude when the field strength is at the order of kV/cm. When the electric field strength is constant, it can be found that the atmospheric breakdown time will be reduced with the increase of pressure. Then the atmospheric breakdown time will increase again when the pressure drops to a certain value. Through the contrast analysis of different field strengths, it also can be found that the higher the electric field intensity, the shorter the atmospheric breakdown time.
参考文献

[1] ZHANG J,JIN Z X,YANG J H,et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Transactions on Plasma Science, 2011,39(6):1438-1445.

[2] 周东方,余道杰,杨建宏,等.基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究[J].物理学报, 2013,62(1):14207-1-14207-7. (ZHOU D F,YU D J,YANG J H,et al. Theoretical and experimental investigation of air breakdown on single high power microwave based on the mixed-atmosphere propagation model[J]. Acta Physica Sinica, 2013,62(1):14207-1-14207-7.)

[3] HIDAKA Y,CHOI E M,MASTOVSKY I,et al. Imaging of atmospheric air breakdown caused by a high-power 110-GHz pulsed Gaussian beam[J]. IEEE Transactions on Plasma Science, 2008,36(4):936-937.

[4] LIU G Z,LIU J Y,HUANG W H,et al. A study of high power microwave air breakdown[J]. Chinese Physics, 2009,9(10): 757-763.

[5] 赵荣,侯德亭,陈勇,等.高功率微波在自生等离子体中的传输特性[J]. 太赫兹科学与电子信息学报, 2008,6(3):216-219. (ZHAO R,HOU D T,CHEN Y,et al. Propagation analysis of high power microwave in self-generated plasma[J]. Journal of Terahertz Science and Electronic Information Technology, 2008,6(3):216-219.)

[6] 袁忠才,时家明.高功率微波与等离子体相互作用理论和数值研究[J].物理学报, 2014,63(9):205-211. (YUAN Zhongcai, SHI Jiaming Theoretical and numerical studies on interactions between high-power microwave and plasma[J]. Acta Physica Sinica, 2014,63(9):205-211.)

[7] 赵刚,闫二艳,陈朝阳,等.高功率微波大气击穿阈值分析及实验[J].强激光与粒子束, 2013,25(z1):111-114. (ZHAO Gang,YAN Eryan,CHEN Zhaoyang,et al. Analysis and experimental study on threshold of air breakdown by high power microwave[J]. High Power Laser and Particle Beams, 2013,25(z1):111-114.)

[8] 卢洵,赵朝锋,徐振启,等.高功率微波在大气击穿时的传输特性研究[J].太赫兹科学与电子信息学报, 2004,2(4):287-289. (LU X,ZHAO C F,XU Z Q,et al. Propagation analysis of high power microwave pulse at air breakdown[J]. Journal of Terahertz Science and Electronic Information Technology, 2004,2(4):287-289.)

[9] 周前红,董志伟. 弱电离大气等离子体电子碰撞能量损失的理论研究[J]. 物理学报, 2013,62(20):308-314. (ZHOU Q H,DONG Z W. Theoretical study on the energy loss induced by electron collisions in weakly ionized air plasma[J]. Acta Physica Sinica, 2013,62(20):308-314.)

[10] NAM S K,VERBONCOEUR J P. Theory of filamentary plasma array formation in microwave breakdown at near-atmospheric pressure[J]. Physical Review Letters, 2009,103(5):055004-1-055004-4.

[11] ZHAO P C,LIAO C,YANG D,et al. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function[J]. Acta Physica Sinica, 2013,62(5):438-445.

[12] 赵朋程,廖成,唐涛,等.高功率微波低空水平传输的FDTD求解与击穿分析[J].重庆邮电大学学报(自然科学版), 2010,22(4):431-435. (ZHAO P C,LIAO C,TANG T,et al. FDTD calculation of high power microwave level propagation in air and breakdown analysis[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2010,22(4):431-435.)

[13] 葛德彪,闫玉波. 电磁波时域有限差分方法[M]. 西安:西安电子科技大学出版社, 2011:200-236. (GE D B,YAN Y B. Finite-Difference Time-Domain Method for Electromagnetic Waves[M]. Xi’an,China:Xidian University Press, 2011:200-236.)

[14] 周东方,余道杰,宁辉,等.高功率微波大气击穿区域分布[J]. 强激光与粒子束, 2014,26(6):119-123. (ZHOU Dongfang,YU Daojie,NING Hui,et al. High power wideband switched oscillator[J]. High Power Laser and Particle Beams, 2014,26(6):119-123.)

[15] 魏进进,周东方,余道杰,等.高功率微波脉冲大气击穿概率研究[J]. 强激光与粒子束, 2014,26(6):10-14. (WEI Jinjin, ZHOU Dongfang,YU Daojie,et al. Probability distribution of high power microwave pulse breakdown in air[J]. High Power Laser and Particle Beams, 2014,26(6):10-14.)

胡俊杰, 余道杰, 魏进进, 蔡北兵, 周东方. 长脉冲 GW级 HPM大气击穿时间分析[J]. 太赫兹科学与电子信息学报, 2017, 15(2): 253. HU Junjie, YU Daojie, WEI Jinjin, CAI Beibing, ZHOU Dongfang. Analysis on atmospheric breakdown time for GW level HPM long pulse[J]. Journal of terahertz science and electronic information technology, 2017, 15(2): 253.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!