光学学报, 2019, 39 (3): 0311003, 网络出版: 2019-05-10   

光学相干层析成像图像中角膜厚度的自动测量方法 下载: 1255次

Automatic Measurement Method for Corneal Thickness of Optical Coherence Tomography Images
作者单位
1 上海大学机电工程与自动化学院, 上海 200444
2 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
引用该论文

高阳, 李中梁, 张建华, 南楠, 王瑄, 王向朝. 光学相干层析成像图像中角膜厚度的自动测量方法[J]. 光学学报, 2019, 39(3): 0311003.

Yang Gao, Zhongliang Li, Jianhua Zhang, Nan Nan, Xuan Wang, Xiangzhao Wang. Automatic Measurement Method for Corneal Thickness of Optical Coherence Tomography Images[J]. Acta Optica Sinica, 2019, 39(3): 0311003.

参考文献

[1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

    Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

[2] Fujimoto J G, Drexler W, Schuman J S, et al. Optical coherence tomography (OCT) in ophthalmology: Introduction[J]. Optics Express, 2009, 17(5): 3978-3979.

    Fujimoto J G, Drexler W, Schuman J S, et al. Optical coherence tomography (OCT) in ophthalmology: Introduction[J]. Optics Express, 2009, 17(5): 3978-3979.

[3] Mathew P T, David S, Thomas N. Endothelial cell loss and central corneal thickness in patients with and without diabetes after manual small incision cataract surgery[J]. Cornea, 2011, 30(4): 424-428.

    Mathew P T, David S, Thomas N. Endothelial cell loss and central corneal thickness in patients with and without diabetes after manual small incision cataract surgery[J]. Cornea, 2011, 30(4): 424-428.

[4] Kohlhaas M, Boehm A G, Spoerl E, et al. Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry[J]. Archives of Ophthalmology, 2006, 124(4): 471-476.

    Kohlhaas M, Boehm A G, Spoerl E, et al. Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry[J]. Archives of Ophthalmology, 2006, 124(4): 471-476.

[5] 刘爱林, 陈常祥. 眼前节组织OCT图像角膜中央厚度测量[J]. 中国医学物理学杂志, 2009, 26(3): 1172-1175.

    刘爱林, 陈常祥. 眼前节组织OCT图像角膜中央厚度测量[J]. 中国医学物理学杂志, 2009, 26(3): 1172-1175.

    Liu A L, Chen C X. Central cornea thickness measured in the anterior chamber OCT image[J]. Chinese Journal of Medical Physics, 2009, 26(3): 1172-1175.

    Liu A L, Chen C X. Central cornea thickness measured in the anterior chamber OCT image[J]. Chinese Journal of Medical Physics, 2009, 26(3): 1172-1175.

[6] Konstantopoulos A, Kuo J, Anderson D, et al. Assessment of the use of anterior segment optical coherence tomography in microbial keratitis[J]. American Journal of Ophthalmology, 2008, 146(4): 534-542.

    Konstantopoulos A, Kuo J, Anderson D, et al. Assessment of the use of anterior segment optical coherence tomography in microbial keratitis[J]. American Journal of Ophthalmology, 2008, 146(4): 534-542.

[7] 舒鹏, 孙延奎, 田小林. 眼前节光学相干层析图像中央角膜厚度自动测量[J]. 应用科学学报, 2012, 30(6): 619-623.

    舒鹏, 孙延奎, 田小林. 眼前节光学相干层析图像中央角膜厚度自动测量[J]. 应用科学学报, 2012, 30(6): 619-623.

    Shu P, Sun Y K, Tian X L. Automatic measurement of central cornea thickness of eye anterior segment optical coherence tomography image[J]. Journal of Applied Sciences, 2012, 30(6): 619-623.

    Shu P, Sun Y K, Tian X L. Automatic measurement of central cornea thickness of eye anterior segment optical coherence tomography image[J]. Journal of Applied Sciences, 2012, 30(6): 619-623.

[8] Puvanathasan P, Bizheva K. Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images[J]. Optics Express, 2009, 17(2): 733-746.

    Puvanathasan P, Bizheva K. Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images[J]. Optics Express, 2009, 17(2): 733-746.

[9] LiuT, Lu ZQ, Liao QM. Speckle reduction for ophthalmic OCT images based on wavelet filtering technique[C]. International Conference on Information Engineering and Computer Science, 2009: 1- 4.

    LiuT, Lu ZQ, Liao QM. Speckle reduction for ophthalmic OCT images based on wavelet filtering technique[C]. International Conference on Information Engineering and Computer Science, 2009: 1- 4.

[10] Du C X, Wang J H, Cui L L, et al. Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography[J]. Cornea, 2012, 31(9): 1036-1043.

    Du C X, Wang J H, Cui L L, et al. Vertical and horizontal corneal epithelial thickness profiles determined by ultrahigh resolution optical coherence tomography[J]. Cornea, 2012, 31(9): 1036-1043.

[11] Hutchings N, Simpson T L, Hyun C, et al. Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2010, 51(9): 4579-4584.

    Hutchings N, Simpson T L, Hyun C, et al. Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2010, 51(9): 4579-4584.

[12] Lin LF, JuY. Automatic extraction of the anterior chamber contour in OCT images[C]. International Symposium on Information Science and Engineering, 2009: 423- 426.

    Lin LF, JuY. Automatic extraction of the anterior chamber contour in OCT images[C]. International Symposium on Information Science and Engineering, 2009: 423- 426.

[13] Li M, Wang Z H, Mao Z, et al. Lens thickness and position of primary angle closure measured by anterior segment optical coherence tomography[J]. Journal of Clinical & Experimental Ophthalmology, 2013, 4(3): 1000281.

    Li M, Wang Z H, Mao Z, et al. Lens thickness and position of primary angle closure measured by anterior segment optical coherence tomography[J]. Journal of Clinical & Experimental Ophthalmology, 2013, 4(3): 1000281.

[14] Williams D, Zheng Y L, Bao F J, et al. Automatic segmentation of anterior segment optical coherence tomography images[J]. Journal of Biomedical Optics, 2013, 18(5): 056003.

    Williams D, Zheng Y L, Bao F J, et al. Automatic segmentation of anterior segment optical coherence tomography images[J]. Journal of Biomedical Optics, 2013, 18(5): 056003.

[15] Gharaibeh A M, Muhsen S M. AbuKhader I B, et al. KeraRing intrastromal corneal ring segments for correction of keratoconus[J]. Cornea, 2012, 31(2): 115-120.

    Gharaibeh A M, Muhsen S M. AbuKhader I B, et al. KeraRing intrastromal corneal ring segments for correction of keratoconus[J]. Cornea, 2012, 31(2): 115-120.

[16] Fares U, Otri A M. Al-Aqaba M A, et al. Correlation of central and peripheral corneal thickness in healthy corneas[J]. Contact Lens and Anterior Eye, 2012, 35(1): 39-45.

    Fares U, Otri A M. Al-Aqaba M A, et al. Correlation of central and peripheral corneal thickness in healthy corneas[J]. Contact Lens and Anterior Eye, 2012, 35(1): 39-45.

[17] Feizi S, Jafarinasab M R, Karimian F, et al. Central and peripheral corneal thickness measurement in normal and keratoconic eyes using three corneal pachymeters[J]. Journal of Ophthalmic & Vision Research, 2014, 9(3): 296-304.

    Feizi S, Jafarinasab M R, Karimian F, et al. Central and peripheral corneal thickness measurement in normal and keratoconic eyes using three corneal pachymeters[J]. Journal of Ophthalmic & Vision Research, 2014, 9(3): 296-304.

[18] Li Y, Shekhar R, Huang D. Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images[J]. Proceedings of SPIE, 2002, 4684: 167-179.

    Li Y, Shekhar R, Huang D. Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images[J]. Proceedings of SPIE, 2002, 4684: 167-179.

[19] Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high-speed optical coherence tomography[J]. Ophthalmology, 2006, 113(5): 792-799.

    Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high-speed optical coherence tomography[J]. Ophthalmology, 2006, 113(5): 792-799.

[20] Li Y, Netto M V, Shekhar R, et al. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography[J]. Ophthalmology, 2007, 114(6): 1124-1132.

    Li Y, Netto M V, Shekhar R, et al. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography[J]. Ophthalmology, 2007, 114(6): 1124-1132.

[21] EichelJ, MishraA, FieguthP, et al. A novel algorithm for extraction of the layers of the cornea[C]. Canadian Conference on Computer and Robot Vision, 2009: 313- 320.

    EichelJ, MishraA, FieguthP, et al. A novel algorithm for extraction of the layers of the cornea[C]. Canadian Conference on Computer and Robot Vision, 2009: 313- 320.

[22] Du WL, Tian XL, Sun YK. A dynamic threshold edge-preserving smoothing segmentation algorithm for anterior chamber OCT images based on modified histogram[C]. International Congress on Image and Signal Processing, 2011: 1123- 1126.

    Du WL, Tian XL, Sun YK. A dynamic threshold edge-preserving smoothing segmentation algorithm for anterior chamber OCT images based on modified histogram[C]. International Congress on Image and Signal Processing, 2011: 1123- 1126.

[23] Du WL, Tian XL, Sun YK. A dynamic threshold segmentation algorithm for anterior chamber OCT images based on wavelet transform[C]. International Congress on Image and Signal Processing, 2012: 279- 282.

    Du WL, Tian XL, Sun YK. A dynamic threshold segmentation algorithm for anterior chamber OCT images based on wavelet transform[C]. International Congress on Image and Signal Processing, 2012: 279- 282.

[24] Du W L, Tian X L, Sun Y K. A fast algorithm for automatic detection of anterior chamber angle points and measurement of central corneal thickness for anterior chamber OCT images[J]. Advanced Materials Research, 2013, 749: 453-458.

    Du W L, Tian X L, Sun Y K. A fast algorithm for automatic detection of anterior chamber angle points and measurement of central corneal thickness for anterior chamber OCT images[J]. Advanced Materials Research, 2013, 749: 453-458.

[25] 袁治灵, 陈俊波, 黄伟源, 等. 基于稳健性主成分分析算法的光学相干层析成像去除散斑噪声的研究[J]. 光学学报, 2018, 38(5): 0511002.

    袁治灵, 陈俊波, 黄伟源, 等. 基于稳健性主成分分析算法的光学相干层析成像去除散斑噪声的研究[J]. 光学学报, 2018, 38(5): 0511002.

    Yuan Z L, Chen J B, Huang W Y, et al. Speckle noise reduction of optical coherence tomography based on robust principle component analysis algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0511002.

    Yuan Z L, Chen J B, Huang W Y, et al. Speckle noise reduction of optical coherence tomography based on robust principle component analysis algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0511002.

[26] 贺琪欲, 李中梁, 王向朝, 等. 基于光学相干层析成像的视网膜图像自动分层方法[J]. 光学学报, 2016, 36(10): 1011003.

    贺琪欲, 李中梁, 王向朝, 等. 基于光学相干层析成像的视网膜图像自动分层方法[J]. 光学学报, 2016, 36(10): 1011003.

    He Q Y, Li Z L, Wang X Z, et al. Automated retinal layer segmentation based on optical coherence tomographic images[J]. Acta Optica Sinica, 2016, 36(10): 1011003.

    He Q Y, Li Z L, Wang X Z, et al. Automated retinal layer segmentation based on optical coherence tomographic images[J]. Acta Optica Sinica, 2016, 36(10): 1011003.

高阳, 李中梁, 张建华, 南楠, 王瑄, 王向朝. 光学相干层析成像图像中角膜厚度的自动测量方法[J]. 光学学报, 2019, 39(3): 0311003. Yang Gao, Zhongliang Li, Jianhua Zhang, Nan Nan, Xuan Wang, Xiangzhao Wang. Automatic Measurement Method for Corneal Thickness of Optical Coherence Tomography Images[J]. Acta Optica Sinica, 2019, 39(3): 0311003.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!