中国激光, 2018, 45 (2): 0207001, 网络出版: 2018-02-28   

植入式生物医疗光电子器件与系统 下载: 2501次特邀综述

Implantable Optoelectronic Devices and Systems for Biomedical Application
作者单位
1 清华大学电子工程系, 北京 100084
2 清华大学材料学院, 北京 100084
引用该论文

史钊, 李丽珠, 赵钰, 付汝兴, 盛兴. 植入式生物医疗光电子器件与系统[J]. 中国激光, 2018, 45(2): 0207001.

Shi Zhao, Li Lizhu, Zhao Yu, Fu Ruxing, Sheng Xing. Implantable Optoelectronic Devices and Systems for Biomedical Application[J]. Chinese Journal of Lasers, 2018, 45(2): 0207001.

参考文献

[1] Humar M, Kwok S J, Choi M, et al. Toward biomaterial-based implantable photonic devices[J]. Nanophotonics, 2017, 6(2): 414-434.

[2] Parashurama N. O'Sullivan T D, de La Zerda A, et al. Continuous sensing of tumor-targeted molecular probes with a vertical cavity surface emitting laser-based biosensor[J]. Journal of Biomedical Optics, 2012, 17(11): 345-352.

[3] Flusberg B A, Nimmerjahn A, Cocker E D, et al. High-speed, miniaturized fluorescence microscopy in freely moving mice[J]. Nature Methods, 2008, 5(11): 935-938.

[4] O'Sullivan T D. Heitz R T, Parashurama N, et al. Real-time, continuous, fluorescence sensing in a freely-moving subject with an implanted hybrid VCSEL/CMOS biosensor[J]. Biomedical Optics Express, 2013, 4(8): 1332-1341.

[5] BellisS, Jackson JC, MathewsonA. Towards a disposable in vivo miniature implantable fluorescence detector[C]. SPIE, 2006, 6083: 60830N.

[6] Rogers J A. Electronics for the human body[J]. The Journal of the American Medical Association, 2015, 313(6): 561-562.

[7] Park S, Guo Y, Jia X, et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 2017, 20(4): 612-619.

[8] Kim T I, Bruchas M R. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 2013, 340(6129): 211-216.

[9] Ko H C, Stoykovich M P, Song J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454(7205): 748-753.

[10] Ohta J, Ohta Y, Takehara H, et al. Implantable microimaging device for observing brain activities of rodents[J]. Proceedings of the IEEE, 2017, 105(1): 158-166.

[11] Park S I, Brenner D S, Shin G, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics[J]. Nature Biotechnology, 2015, 33(12): 1280-1286.

[12] Live Well Magazine. Human brain[EB/OL]. ( 2013- 1- 22) [2017-10-23]. . http://www.livewellmagazine.org/mmc-offers-new-minimally-invasive-procedure-to-treat-large-aneurysms/human-brain/

[13] Zhang F, Gradinaru V, Adamantidis A, et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures[J]. Nature protocols, 2010, 5(3): 439-456.

[14] Cao H, Gu L, Mohanty S K, et al. An integrated μLED optrode for optogenetic stimulation and electrical recording[J]. IEEE Transactions on Bio-Medical Engineering, 2013, 60(1): 225-229.

[15] Kobayashi T, Motoyama M, Masuda H, et al. Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex[J]. Biosensors and Bioelectronics, 2012, 38(1): 321-330.

[16] Tokuda T, Hiyama K, Sawamura S, et al. CMOS-based multichip networked flexible retinal stimulator designed for image-based retinal prosthesis[J]. IEEE Transactions on Electron Devices, 2009, 56(11): 2577-2585.

[17] BinggerP, FialaJ, SeifertA, et al. In vivo monitoring of blood oxygenation using an implantable MEMS-based sensor[C]. IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 2010: 1031- 1034.

[18] KeiserG. Optical fiber communications[M]. New York: John Wiley & Sons, 2003.

[19] Jacques S L. Corrigendum: optical properties of biological tissues: a review[J]. Physics in Medicine and Biology, 2013, 58(14): 5007-5008.

[20] Deisseroth K. Optogenetics[J]. Nature Methods, 2011, 8(1): 26-29.

[21] Gradinaru V, Mogri M, Thompson K R, et al. Optical deconstruction of parkinsonian neural circuitry[J]. Science, 2009, 324(5925): 354-359.

[22] Sparta D R, Stamatakis A M, Phillips J L, et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits[J]. Nature Protocols, 2011, 7(1): 12-23.

[23] Deisseroth Lab.Frontrat[EB/OL]. ( 2015-4-14) [2017-9-5]. https://web.stanford.edu/group/ dlab/media/layout/frontrat.png.

[24] Pisanello F, Sileo L, Oldenburg I A, et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics[J]. Neuron, 2014, 82(6): 1245-1254.

[25] Chen Q, Cichon J, Wang W, et al. Imaging neural activity using Thy1-GCaMP transgenic mice[J]. Neuron, 2012, 76(2): 297-308.

[26] Gunaydin L A, Grosenick L, Finkelstein J C, et al. Natural neural projection dynamics underlying social behavior[J]. Cell, 2014, 157(7): 1535-1551.

[27] Sridharan A, Rajan S D, Muthuswamy J. Long-term changes in the material properties of brain tissue at the implant-tissue interface[J]. Journal of Neural Engineering, 2013, 10(6): 066001.

[28] Grosenick L, Marshel J H, Deisseroth K. Closed-loop and activity-guided optogenetic control[J]. Neuron, 2015, 86(1): 106-139.

[29] Gilletti A, Muthuswamy J. Brain micromotion around implants in the rodent somatosensory cortex[J]. Journal of Neural Engineering, 2006, 3(3): 189-195.

[30] Canales A, Jia X, Froriep U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 2015, 33(3): 277-284.

[31] Lu C, Froriep U P, Koppes R A, et al. Polymer fiber probes enable optical control of spinal cord and muscle function in vivo[J]. Advanced Functional Materials, 2014, 24(42): 6594-6600.

[32] Lu C, Park S, Richner T J, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 2017, 3(3): e1600955.

[33] Choi M, Choi J W, Kim S, et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo[J]. Nature Photonics, 2013, 7(12): 987-994.

[34] Choi M, Humar M, Kim S, et al. Step-index optical fiber made of biocompatible hydrogels[J]. Advanced Materials, 2015, 27(27): 4081-4086.

[35] Nizamoglu S, Gather M C, Humar M, et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine[J]. Nature Communications, 2016, 7: 10374.

[36] Parker S T, Domachuk P, Amsden J, et al. Biocompatible silk printed optical waveguides[J]. Advanced Materials, 2009, 21(23): 2411-2415.

[37] Ceci-Ginistrelli E, Pugliese D, Boetti N G, et al. Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber[J]. Optical Materials Express, 2016, 6(6): 2040-2051.

[38] Guo J, Liu X, Jiang N, et al. Highly stretchable, strain sensing hydrogel optical fibers[J]. Advanced Materials, 2016, 28(46): 10244-10249.

[39] Yetisen A K, Jiang N, Fallahi A, et al. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid[J]. Advanced Materials, 2017, 29(15): 1606380.

[40] Gentile P, Chiono V, Carmagnola I, et al. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering[J]. International Journal of Molecular Sciences, 2014, 15(3): 3640-3659.

[41] Lopes M S, Jardini A L, Filho R M. Poly (lactic acid) production for tissue engineering applications[J]. Procedia Engineering, 2012, 42: 1402-1413.

[42] Hwang S W, Tao H, Kim D H, et al. A physically transient form of silicon electronics[J]. Science, 2012, 337(6102): 1640-1644.

[43] Kang S K, Murphy R K, Hwang S W, et al. Bioresorbable silicon electronic sensors for the brain[J]. Nature, 2016, 530(7588): 71-76.

[44] Tao H, Kainerstorfer J M, Siebert S M, et al. Implantable, multifunctional, bioresorbable optics[J]. Proceedings of the National Academy of Sciences of United States of America, 2012, 109(48): 19584-19589.

[45] Dupuis A, Guo N, Gao Y, et al. Prospective for biodegradable microstructured optical fibers[J]. Optics Letters, 2007, 32(2): 109-111.

[46] Menard E, Lee K J, Khang D Y, et al. A printable form of silicon for high performance thin film transistors on plastic substrates[J]. Applied Physics Letters, 2004, 84(26): 5398-5400.

[47] Ko H C, Baca A J, Rogers J A. Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers[J]. Nano Letters, 2006, 6(10): 2318-2324.

[48] Kim T, Jung Y H, Song J, et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates[J]. Small, 2012, 8(11): 1643-1649.

[49] Kim H, Brueckner E, Song J, et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting[J]. Proceedings of the National Academy of Sciences of United States of America, 2011, 108(25): 10072-10077.

[50] Lee J W, Tak Y, Kim J Y, et al. Growth of high-quality InGaN/GaN LED structures on (111) Si substrates with internal quantum efficiency exceeding 50%[J]. Journal of Crystal Growth, 2011, 315(1): 263-266.

[51] Chang CY, KaiF. GaAs high-speed devices[M]. New York: John Wiley & Sons, 1994.

[52] Yoon J, Jo S, Chun I S, et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies[J]. Nature, 2010, 465(7296): 329-333.

[53] Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits[J]. Science, 2008, 320(5875): 507-511.

[54] Kim D H, Kim Y S, Wu J, et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper[J]. Advanced Materials, 2009, 21(36): 3703-3707.

[55] Baca A J, Yu K J, Xiao J, et al. Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs[J]. Energy & Environmental Science, 2010, 3(2): 208-211.

[56] Park S I, Xiong Y, Kim R H, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays[J]. Science, 2009, 325(5943): 977-981.

[57] Sheng X, Yun M H, Zhang C, et al. Device architectures for enhanced photon recycling in thin-film multijunction solar cells[J]. Advanced Energy Materials, 2015, 5(1): 1400919.

[58] Sheng X, Robert C, Wang S, et al. Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material[J]. Laser & Photonics Reviews, 2015, 9(4): L17-L22.

[59] Meitl M A, Zhu Z T, Kumar V, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp[J]. Nature Materials, 2006, 5(1): 33-38.

[60] Kim R H, Kim S, Song Y M, et al. Flexible vertical light emitting diodes[J]. Small, 2012, 8(20): 3123-3128.

[61] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.

[62] Khang D Y, Jiang H Q, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311(5758): 208-212.

[63] Choi W M, Song J, Khang D Y, et al. Biaxially stretchable "wavy" silicon nanomembranes[J]. Nano Letters, 2007, 7(6): 1655-1663.

[64] Kim D H, Song J, Choi W M, et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations[J]. Proceedings of the National Academy of Sciences of United States of America, 2008, 105(48): 18675-18680.

[65] Kim T H, Carlson A, Ahn J H, et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps[J]. Applied Physics Letters, 2009, 94(11): 113502.

[66] Lee J, Wu J, Shi M, et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage[J]. Advanced Materials, 2011, 23(8): 986-991.

[67] Hu X, Krull P, De Graff B, et al. Stretchable inorganic-semiconductor electronic systems[J]. Advanced Materials, 2011, 23(26): 2933-2936.

[68] Fan J A, Yeo W H, Su Y, et al. Fractal design concepts for stretchable electronics[J]. Nature Communications, 2014, 5(2): 3266.

[69] Kim D H, Kim Y S, Amsden J, et al. Silicon electronics on silk as a path to bioresorbable, implantable devices[J]. Applied Physics Letters, 2009, 95(13): 133701.

[70] Kim R H, Kim D H, Xiao J, et al. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics[J]. Nature Materials, 2010, 9(11): 929-937.

[71] Kim J, Banks A, Cheng H, et al. Epidermal electronics with advanced capabilities in near-field communication[J]. Small, 2015, 11(8): 906.

[72] Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nature Materials, 2010, 9(6): 511-517.

[73] Xu L, Gutbrod S R, Bonifas A P, et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium[J]. Nature Communications, 2014, 5: 3329.

[74] Dufour S, De K Y. Optrodes for combined optogenetics and electrophysiology in live animals[J]. Neurophotonics, 2015, 2(3): 031205.

[75] Adamantidis A R, Zhang F, Aravanis A M, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 2007, 450(7168): 420-424.

[76] Ung K, Arenkiel B R. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue[J]. Journal of Visualized Experiments, 2012, 68: e50004.

[77] Voigts J, Siegle J H, Pritchett D L, et al. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice[J]. Frontiers in Systems Neuroscience, 2013, 7: 8.

[78] PisanelloF, SileoL, Patria AD, et al. Multipoint optogenetic control of neural activity with tapered and nanostructured optical fibers[C]. IEEE Microwave Symposium, 2016: 1- 4.

[79] SzaboV. Optogenetics in freely behaving mice with a fiberscope[D]. Paris: Paris DescartesUniversity, 2013.

[80] Ghosh K K, Burns L D, Cocker E D, et al. Miniaturized integration of a fluorescence microscope[J]. Nature Methods, 2011, 8(10): 871-878.

[81] MurariK, Etienne-CummingsR, CauwenberghsG, et al. An integrated imaging microscope for untethered cortical imaging in freely-moving animals[C]. Engineering in Medicine and Biology Society (EMBC), 2010: 5795- 5798.

[82] Zong W, Wu R, Li M, et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J]. Nature Methods, 2017, 14(7): 713-719.

[83] WangS, BuchA, Hussaini SA, et al. Focused ultrasound facilitated adenoviral delivery for optogenetic stimulation[C]. Ultrasonics Symposium, 2015: 1- 4.

[84] Wang S, Kugelman T, Buch A, et al. Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics[J]. Scientific Reports, 2017, 7: 39955.

[85] Lu X, Wang P, Niyato D, et al. Wireless charging technologies: fundamentals, standards, and network applications[J]. IEEE Communications Surveys & Tutorials, 2015, 18(2): 1413-1452.

[86] Zhang L, Hu X, Wang Z, et al. A review of supercapacitor modeling, estimation, and applications: a control/management perspective[J]. Renewable and Sustainable Energy Reviews, 2017, 81(2): 1868-1878.

[87] Hashimoto M, Hata A, Miyata T, et al. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice[J]. Gene, 2014, 1(1): 36-40.

[88] 常州恩福赛印刷电子有限公司. 纸电池[EB/OL]. ( 2017- 01- 01)[2017-07-15]. . http://www.ksfpe.com/m/products.php?tid=4

[89] Park S I, Shin G, Banks A, et al. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics[J]. Journal of Neural Engineering, 2015, 12(5): 056002.

[90] Yin L, Huang X, Xu H, et al. Materials, designs, and operational characteristics for fully biodegradable primary batteries[J]. Advanced Materials, 2014, 26(23): 3879-3884.

[91] Yazdi A A, Preite R, Milton R D, et al. Rechargeable membraneless glucose biobattery: towards solid-state cathodes for implantable enzymatic devices[J]. Journal of Power Sources, 2017, 343: 103-108.

[92] 陈梅. 日本开发出可粘贴生物燃料电池[J]. 电源技术, 2011( 7): 755- 756.

[93] 佚名. 能感知糖分的发光二极管[J]. 金属功能材料, 2013( 1): 70- 70.

[94] Strasser M, Aigner R, Lauterbach C, et al. Micromachined CMOS thermoelectric generators as on-chip power supply[J]. Sensors and Actuators A: Physical, 2004, 114(2/3): 362-370.

[95] Lu B, Chen Y, Ou D, et al. Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy[J]. Scientific Reports, 2015, 5: 16065.

[96] Guido F, Qualtieri A, Algieri L, et al. AlN-based flexible piezoelectric skin for energy harvesting from human motion[J]. Microelectronic Engineering, 2016, 159: 174-178.

[97] Montgomery K L, Yeh A J, Ho J S, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice[J]. Nature Methods, 2015, 12(10): 969.

[98] Park S I, Shin G, Mccall J G, et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics[J]. Proceedings of the National Academy of Sciences of United States of America, 2016, 113(50): E8169.

[99] Hussain A M, Ghaffar F A, Park S I, et al. Metal/polymer based stretchable antenna for constant frequency far-field communication in wearable electronics[J]. Advanced Functional Materials, 2015, 25(42): 6565-6575.

[100] Kim J, Salvatore G A, Araki H, et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin[J]. Science Advances, 2016, 2(8): e1600418.

[101] Seo D, Neely R M, Shen K, et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust[J]. Neuron, 2016, 91(3): 529.

[102] Shin G, Gomez A M, Al-Hasani R, et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics[J]. Neuron, 2017, 93(3): 509.

[103] Assawaworrarit S, Yu X, Fan S, et al. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit[J]. Nature, 2017, 546(7658): 387-390.

[104] Gagnonturcotte G, Kisomi A, Ameli R, et al. A wireless optogenetic headstage with multichannel electrophysiological recording capability[J]. Sensors, 2015, 15(9): 22776-22797.

[105] Wentz C T, Bernstein J G, Monahan P E, et al. A wirelessly powered and controlled device for optical neural control of freely-behaving animals[J]. Journal of Neural Engineering, 2011, 8(4): 046021.

[106] Steiner M S, Duerkop A, Wolfbeis O S. Optical methods for sensing glucose[J]. Chemical Society Reviews, 2011, 40(9): 4805-4839.

[107] So C F, Choi K S, Wong T K, et al. Recent advances in noninvasive glucose monitoring[J]. Medical Devices, 2012, 5(5): 45-52.

[108] Shults M C, Rhodes R K, Updike S J, et al. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors[J]. IEEE Transactions on Bio-Medical Engineering, 1994, 41(10): 937-942.

[109] Ahmadi M M, Jullien G A. A wireless-implantable microsystem for continuous blood glucose monitoring[J]. IEEE transactions on biomedical circuits and systems, 2009, 3(3): 169-180.

[110] Liao Y T, Yao H, Lingley A, et al. A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring[J]. IEEE Journal of Solid-State Circuits, 2012, 47(1): 335-344.

[111] Chu M X, Miyajima K, Takahashi D, et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment[J]. Talanta, 2011, 83(3): 960-965.

[112] Heo Y J, Shibata H, Okitsu T, et al. Long-term in vivo glucose monitoring using fluorescent hydrogel fibers[J]. Proceedings of the National Academy of Sciences of United States of America, 2011, 108(33): 13399-13403.

[113] Ruckh T T, Clark H A. Implantable nanosensors: toward continuous physiologic monitoring[J]. Analytical Chemistry, 2014, 86: 1314-1323.

[114] Kanukurthy K, Cover M B, Andersen D R. Data acquisition unit for an implantable multi-channel optical glucose sensor[J]. Integrated Computer Aided Engineering, 2008, 15(2): 109-130.

[115] Chang Y W, Yu P C, Huang Y T, et al. A high-sensitivity CMOS-compatible biosensing system based on absorption photometry[J]. IEEE Sensors Journal, 2009, 9(2): 120-127.

[116] Fard S T, Hofmann W, Fard P T, et al. Optical absorption glucose measurements using 2.3 μm vertical-cavity semiconductor lasers[J]. IEEE Photonics Technology Letters, 2008, 20(11): 930-932.

[117] Shen Y C, Davies A G, Linfield E H, et al. Determination of glucose concentration in whole blood using Fourier-transform infrared spectroscopy[J]. Journal of Biological Physics, 2003, 29(2): 129-133.

[118] 李东明, 贾书海. 基于多光谱应用BP人工神经网络预测血糖[J]. 激光与光电子学进展, 2017, 54(3): 031703.

    Li D M, Jia S H. Application of BP artificial neural network in blood glucose prediction based on multi-spectrum[J]. Laser and Optoelectronics Progress, 2017, 54(3): 031703.

[119] YuY, Crothall KD, Jahn LG, et al. Laser diode applications in a continuous blood glucose sensor[C]. SPIE, 2003, 4996: 268- 274.

[120] Trabelsi A, Boukadoum M, Siaj M. A preliminary investigation into the design of an implantable optical blood glucose sensor[J]. American Journal of Biomedical Engineering, 2011, 1(2): 62-67.

[121] Khan F, Gnudi L, Pickup J C. Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: a comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies[J]. Biochemical and Biophysical Research Communications, 2008, 365(1): 102-106.

[122] Ballerstadt R, Evans C, Gowda A, et al. In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring[J]. Diabetes Technology & Therapeutics, 2006, 8(3): 296-311.

[123] Chaudhary A. McShane M J, Srivastava R. Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor[J]. Analyst, 2010, 135(10): 2620-2628.

[124] Pasic A, Koehler H, Klimant I, et al. Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue[J]. Sensors and Actuators B: Chemical, 2007, 122(1): 60-68.

[125] Valdastri P, Susilo E, Forster T, et al. Wireless implantable electronic platform for chronic fluorescent-based biosensors[J]. IEEE Transactions on Bio-Medical Engineering, 2011, 58(6): 1846-1854.

[126] ShibataH, TsudaY, KawanishiT, et al. Implantable fluorescent hydrogel for continous blood glucose monitoring[C]. Solid-State Sensors, Actuators and Microsystems Conference, 2009: 1453- 1456.

[127] Tokuda T, Takahashi M, Uejima K, et al. CMOS image sensor-based implantable glucose sensor using glucose-responsive fluorescent hydrogel[J]. Biomedical Optics Express, 2014, 5(11): 3859-3870.

[128] Kearney P M, Whelton M, Reynolds K, et al. Global burden of hypertension: analysis of worldwide data[J]. The lancet, 2005, 365(9455): 217-223.

[129] Whitesall S E, Hoff J B, Vollmer A P, et al. Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2004, 286(6): H2408-H2415.

[130] Potkay J A. Long term, implantable blood pressure monitoring systems[J]. Biomedical Microdevices, 2008, 10(3): 379-392.

[131] Fiala J, Bingger P, Ruh D, et al. An implantable optical blood pressure sensor based on pulse transit time[J]. Biomedical Microdevices, 2013, 15(1): 73-81.

[132] Thomas J G. A method for continuously indicating blood pressure[J]. The Journal of Physiology, 1955, 129(3): 75-76.

[133] Millasseau S C, Ritter J M, Takazawa K, et al. Contour analysis of the photoplethysmographic pulse measured at the finger[J]. Journal of Hypertension, 2006, 24(8): 1449-1456.

[134] Turcott R G, Pavek T J. Hemodynamic sensing using subcutaneous photoplethysmography[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2008, 295(6): H2560-H2572.

[135] Theodor M, Ruh D, Fiala J, et al. Subcutaneous blood pressure monitoring with an implantable optical sensor[J]. Biomedical Microdevices, 2013, 15(5): 811-820.

[136] Webb R K, Ralston A C, Runciman W B. Potential errors in pulse oximetry[J]. Anaesthesia, 1991, 46(3): 207-212.

[137] Beiderman M, Tam T, Fish A, et al. A low-light CMOS contact imager with an emission filter for biosensing applications[J]. IEEE transactions on biomedical circuits and systems, 2008, 2(3): 193-203.

[138] Huber D, Gutnisky D A, Peron S, et al. Multiple dynamic representations in the motor cortex during sensorimotor learning[J]. Nature, 2012, 484(7395): 473-478.

[139] Dombeck D A, Khabbaz A N, Collman F, et al. Imaging large-scale neural activity with cellular resolution in awake, mobile mice[J]. Neuron, 2007, 56(1): 43-57.

[140] Mukamel E A, Nimmerjahn A, Schnitzer M J. Automated analysis of cellular signals from large-scale calcium imaging data[J]. Neuron, 2009, 63(6): 747-760.

[141] Andermann M L, Kerlin A M, Reid R C. Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing[J]. Frontiers in Cellular Neuroscience, 2010, 4(1): 3.

[142] Nimmerjahn A, Mukamel E A, Schnitzer M J. Motor behavior activates Bergmann glial networks[J]. Neuron, 2009, 62(3): 400-412.

[143] 安坤, 王晶, 梁东, 等. 利用SOFI方法提高光片荧光显微镜横向分辨率[J]. 中国激光, 2017, 44(6): 0607002.

    An K, Wang J, Liang D, et al. Improving lateral resolution of light sheet fluorescence microscopy with SOFI method[J]. Chinese Journal of Lasers, 2017, 44(6): 0607002.

[144] Helmchen F, Fee M S, Tank D W, et al. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals[J]. Neuron, 2001, 31(6): 903-912.

[145] Helmchen F. Miniaturization of fluorescence microscopes using fibre optics[J]. Experimental Physiology, 2002, 87(6): 737-745.

[146] Mehta A D, Jung J C, Flusberg B A, et al. Fiber optic in vivo imaging in the mammalian nervous system[J]. Current Opinion in Neurobiology, 2004, 14(5): 617-628.

[147] O'Sullivan T. Munro E A, Parashurama N, et al. Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules[J]. Optics Express, 2010, 18(12): 12513-12525.

[148] O'Sullivan TD, Munro E, de la Zerda A, et al. Implantable optical biosensor for in vivo molecular imaging[C]. SPIE, 2009, 7173: 717309.

[149] Tokuda T, Tanaka K, Matsuo M, et al. Optical and electrochemical dual-image CMOS sensor for on-chip biomolecular sensing applications[J]. Sensors and Actuators A: Physical, 2007, 135(2): 315-322.

[150] Tokuda T, Noda T, Sasagawa K, et al. Optical and electric multifunctional CMOS image sensors for on-chip biosensing applications[J]. Materials, 2010, 4(1): 84-102.

[151] Tagawa A, Minami H, Mitani M, et al. 49(1S): 01AG02[J]. electrical potential in deep brain of mouse. Japanese Journal of Applied Physics, 2010.

[152] Takehara H, Ohta Y, Motoyama M, et al. Intravital fluorescence imaging of mouse brain using implantable semiconductor devices and epi-illumination of biological tissue[J]. Biomedical Optics Express, 2015, 6(5): 1553-1564.

[153] Takehara H, Katsuragi Y, Ohta Y, et al. Implantable micro-optical semiconductor devices for optical theranostics in deep tissue[J]. Applied Physics Express, 2016, 9(4): 047001.

[154] Kobayashi T, Masuda H, Kitsumoto C, et al. Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system[J]. Biosensors and Bioelectronics, 2014, 53: 31-36.

[155] Kobayashi T, Haruta M, Sasagawa K, et al. Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca 2+ fluoroimaging [J]. Scientific Reports, 2016, 6: 21247.

[156] Cogan S F. Neural stimulation and recording electrodes[J]. Annual Review of Biomedical Engineering, 2008, 10: 275-309.

[157] Butovas S, Schwarz C. Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings[J]. Journal of Neurophysiology, 2003, 90(5): 3024-3039.

[158] Aravanis A M, Wang L P, Zhang F, et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. Journal of Neural Engineering, 2007, 4(3): S143.

[159] Boyden E S, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 2005, 8(9): 1263-1268.

[160] Zorzos A N, Scholvin J, Boyden E S, et al. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits[J]. Optics Letters, 2012, 37(23): 4841-4843.

[161] Lee S T, Williams P A, Braine C E, et al. A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator[J]. IEEE Transactions on Rehabilitation Engineering, 2015, 23(4): 655-664.

[162] Wu F, Stark E, Ku P C, et al. Monolithically integrated LEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals[J]. Neuron, 2015, 88(6): 1136-1148.

[163] Nakajima A, Kimura H, Sawadsaringkarn Y, et al. CMOS image sensor integrated with micro-LED and multielectrode arrays for the patterned photostimulation and multichannel recording of neuronal tissue[J]. Optics Express, 2012, 20(6): 6097-6108.

[164] Bernstein JG, HanX, Henninger MA, et al. Prosthetic systems for therapeutic optical activation and silencing of genetically-targeted neurons[C]. SPIE, 2008, 6854: 68540H.

[165] Shao J, Xue S, Yu G, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice[J]. Science Translational Medicine, 2017, 9(387): l2298.

[166] Mathieson K, Loudin J, Goetz G, et al. Photovoltaic retinal prosthesis with high pixel density[J]. Nature Photonics, 2012, 6(6): 391-397.

[167] Arthur WB. The nature of technology: what it is and how it evolves[M]. New York: Simon and Schuster, 2009.

[168] Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays[J]. Nature Photonics, 2013, 7(10): 817-824.

[169] Ghosh A P, Gerenser L J, Jarman C M, et al. Thin-film encapsulation of organic light-emitting devices[J]. Applied Physics Letters, 2005, 86(22): 223503.

[170] Bansal A K, Hou S, Kulyk O, et al. Wearable organic optoelectronic sensors for medicine[J]. Advanced Materials, 2015, 27(46): 7638-7644.

[171] Lewandowski B E, Kilgore K L, Gustafson K J. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power[J]. Annals of Biomedical Engineering, 2007, 35(4): 631-641.

[172] Contag C H, Bachmann M H. Advances in in vivo bioluminescence imaging of gene expression[J]. Annals of Biomedical Engineering, 2002, 4(1): 235-260.

[173] Morais J M, Papadimitrakopoulos F, Burgess D J. Biomaterials/tissue interactions: possible solutions to overcome foreign body response[J]. The AAPS Journal, 2010, 12(2): 188-196.

[174] 医谷. 关于个性化医疗的全面解读[EB/OL]. ( 2014- 10- 27) [2017-8-13]. . http://www.yigoonet.com/article/2259460.html

史钊, 李丽珠, 赵钰, 付汝兴, 盛兴. 植入式生物医疗光电子器件与系统[J]. 中国激光, 2018, 45(2): 0207001. Shi Zhao, Li Lizhu, Zhao Yu, Fu Ruxing, Sheng Xing. Implantable Optoelectronic Devices and Systems for Biomedical Application[J]. Chinese Journal of Lasers, 2018, 45(2): 0207001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!