激光与光电子学进展, 2017, 54 (10): 102401, 网络出版: 2017-10-09  

纳米金属光栅对石墨烯滤波影响的仿真分析

Simulation Analysis on Influence of Metal Nanograting on Graphene Filtering
作者单位
遵义师范学院物理与机电工程学院, 贵州 遵义 563006
摘要
采用有限元法, 研究了基于石墨烯/金属混合纳米光栅的太赫兹(THz)滤波器。混合光栅可构成纳米腔阵列, 利用腔中磁场法布里-珀罗谐振效应, 制作了THz滤波器。该滤波器对波长的选择不易受外界环境的影响, 而且其滤波波长可动态调控; 另外, 可通过增加石墨烯的层数增强其滤波能力。
Abstract
A terahertz (THz) filter based on graphene/metal hybrid nanogratings is studied with the finite element method. Nanocavity arrays can be formed by the hybrid gratings. A THz filter is prepared by using the magnetic Fabray-Perot resonance effect in the nanocavity. The wavelength choice performance of this filter is unaffected by the external environments and the filtering wavelength can also be dynamically controlled. In addition, the filtering performance of this filter can be enhanced via the increase of the graphene layer number.
参考文献

[1] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[2] 刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

    Liu Yuanzhong, Zhang Yuping, Cao Yanyan, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.

[3] 田正浩, 司长峰, 屈文山, 等. 基于溶液加工氧化石墨烯的高性能有机太阳能电池[J]. 光学学报, 2017, 37(4): 0416001.

    Tian Zhenghao, Si Changfeng, Qu Wenshan, et al. High-performance organic photovoltaics using solution-processed graphene oxide[J]. Acta Optica Sinica, 2017, 37(4): 0416001.

[4] Wu Y, Lin Y M, Bol A A, et al. High-frequency, scaled graphene transistors on diamond-like carbon[J]. Nature, 2011, 472(7341): 74-78.

[5] Lin Y M, Valdes-Garcia A, Han S J, et al. Wafer-scale graphene integrated circuit[J]. Science, 2011, 332(6035): 1294-1297.

[6] Pince E, Kocabas C. Investigation of high frequency performance limit of graphene field effect transistors[J]. Applied Physics Letters, 2010, 97(17): 173106.

[7] Rogers J A. Electronic materials: Making graphene for macroelectronics[J]. Nature Nanotechnology, 2008, 3(5): 254-255.

[8] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

[9] Chanteloup L J C, Albach D, Morris S C, et al. Breakthroughs in photonics 2010[J]. IEEE Photonics Journal, 2011, 3(2): 241-336.

[10] 吴冬芹, 黄翀,杨玮枫. 基于石墨烯等离子体表面处理改善pH传感特性的研究[J]. 激光与光电子学进展, 2017, 54(1): 012401.

    Wu Dongqin, Huang Chong, Yang Weifeng. Improvement on pH sensing properties based on surface treatment of graphene plasma[J]. Laser & Optoelectronics Progress, 2017, 54(1): 012401.

[11] 李勇, 张惠芳, 范天馨, 等. 双介质加载石墨烯表面等离子体激元波导的理论分析[J]. 光学学报, 2016, 36(7): 0724001.

    Li Yong, Zhang Huifang, Fan Tianxin, et al. Theoretical analysis of double dielectric loaded graphene surface plasmon polariton[J]. Acta Optica Sinica, 2016, 36(7): 0724001.

[12] 刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

    Liu Yuanzhong, Zhang Yuping, Cao Yanyan, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.

[13] 毕卫红, 李彩丽, 王晓愚, 等. 覆石墨烯微纳光纤双折射与电光调控特性[J]. 光学学报, 2016, 36(10): 1026013.

    Bi Weihong, Li Caili, Wang Xiaoyu, et al. Birefringence and electro-optic properties of graphene covered microfiber[J]. Acta Optica Sinica, 2016, 36(10): 1026013.

[14] Yao Z H, Huang Y Y, Wang Q, et al. Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region[J]. Computational Materials Science, 2016, 117: 544-548.

[15] Huang Y Y, Yao Z H, Hu F R, et al. Manipulating magnetoinductive coupling with graphene-based plasmonic metamaterials in THz region[J]. Plasmonics, 2016, 11(4): 963-970.

[16] Salihoglu O, Balci S, Kocabas C. Plasmon-polaritons on graphene-metal surface and their use in biosensors[J]. Applied Physics Letters, 2012, 100(21): 213110.

[17] Chen S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. ACS Nano, 2011, 5(2): 1321-1327.

[18] Jadidi M M, Sushkov A B, Myers-Ward R L, et al. Hybrid metal-graphene plasmons for tunable terahertz technology[J]. Nano Letters, 2015, 15(10): 7099-7104.

[19] Cai Y J, Zhu J F, Liu Q H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers[J]. Applied Physics Letters, 2015, 106(4): 043105.

[20] 刘伟光, 胡滨, 李彪, 等. 基于石墨烯-金属复合结构的光学调制器研究进展[J]. 激光与光电子学进展, 2016, 53(3): 030005.

    Liu Weiguang, Hu Bin, Li Biao, et al. Research progress of optical modulator based on graphene-metal composite structures[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030005.

[21] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291-1294.

[22] Cheng H, Chen S Q, Yu P, et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Applied Physics Letters, 2013, 103(20): 203112.

[23] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726.

[24] Thongrattanasiri S, Manjavacas A, De Abajo F J G. Quantum finite-size effects in graphene plasmons[J]. ACS Nano, 2012, 6(2): 1766-1775.

孙斌, 杨友昌, 万猛, 谢飞凤. 纳米金属光栅对石墨烯滤波影响的仿真分析[J]. 激光与光电子学进展, 2017, 54(10): 102401. Sun Bin, Yang Youchang, Wan Meng, Xie Feifeng. Simulation Analysis on Influence of Metal Nanograting on Graphene Filtering[J]. Laser & Optoelectronics Progress, 2017, 54(10): 102401.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!