中国激光, 2020, 47 (7): 0701009, 网络出版: 2020-07-10   

太赫兹量子级联激光器研究进展 下载: 3008次特邀综述

Research Progress on Terahertz Quantum Cascade Lasers
作者单位
中国科学院上海微系统与信息技术研究所太赫兹固态技术重点实验室, 上海 200050
引用该论文

万文坚, 黎华, 曹俊诚. 太赫兹量子级联激光器研究进展[J]. 中国激光, 2020, 47(7): 0701009.

Wan Wenjian, Li Hua, Cao Juncheng. Research Progress on Terahertz Quantum Cascade Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701009.

参考文献

[1] 曹俊诚. 半导体太赫兹源、探测器与应用[M]. 北京: 科学出版社, 2012: 1.

    Cao JC. Semiconductor terahertz source detector and application[M]. Beijing: Science Press, 2012: 1.

[2] 符张龙, 李锐志, 李弘义, 等. 基于太赫兹量子级联激光器的生物医学成像研究进展[J]. 中国激光, 2020, 47(2): 0207014.

    Fu Z L, Li R Z, Li H Y, et al. Progress in biomedical imaging based on terahertz quantum cascade lasers[J]. Chinese Journal of Lasers, 2020, 47(2): 0207014.

[3] 谭智勇, 曹俊诚. 基于太赫兹半导体量子阱器件的光电表征技术及应用[J]. 中国激光, 2019, 46(6): 0614004.

    Tan Z Y, Cao J C. Photoelectric characterization technique based on terahertz semiconductor quantum-well devices and its applications[J]. Chinese Journal of Lasers, 2019, 46(6): 0614004.

[4] Kumar S. Recent progress in terahertz quantum cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 38-47.

[5] 邬崇朝. 窄光束、高功率、频率可调谐的THz量子级联激光器[J]. 中国激光, 2019, 46(10): 1001002.

    Wu C Z. Terahertz quantum cascade lasers with narrow beam, high output power, and frequency tunability[J]. Chinese Journal of Lasers, 2019, 46(10): 1001002.

[6] Köhler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 2002, 417(6885): 156-159.

[7] Williams B S. Terahertz quantum-cascade lasers[J]. Nature Photonics, 2007, 1(9): 517-525.

[8] Zeng Y Q, Qiang B, Wang Q J. Photonic engineering technology for the development of terahertz quantum cascade lasers[J]. Advanced Optical Materials, 2020, 8(3): 1900573.

[9] Williams B S, Kumar S, Hu Q, et al. High-power terahertz quantum-cascade lasers[J]. Electronics Letters, 2006, 42(2): 89-91.

[10] Li L H, Chen L, Zhu J, et al. Terahertz quantum cascade lasers with >1 W output powers[J]. Electronics Letters, 2014, 50(4): 309-311.

[11] Fathololoumi S, Dupont E. Chan C W I, et al. Terahertz quantum cascade lasers operating up to- 200 K with optimized oscillator strength and improved injection tunneling[J]. Optics Express, 2012, 20(4): 3866-3876.

[12] Deutsch C, Kainz M A, Krall M, et al. High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers[J]. ACS Photonics, 2017, 4(4): 957-962.

[13] Deutsch C, Krall M, Brandstetter M, et al. High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K[J]. Applied Physics Letters, 2012, 101(21): 211117.

[14] Hirayama H, Terashima W. Recent progress of THz-quantum cascade lasers using nitride-based materials[J]. Proceedings of SPIE, 2015, 9585: 958504.

[15] Walther C, Fischer M, Scalari G, et al. Quantum cascade lasers operating from 1.2 to 1.6 THz[J]. Applied Physics Letters, 2007, 91(13): 131122.

[16] Chan C W I, Hu Q, Reno J L. Ground state terahertz quantum cascade lasers[J]. Applied Physics Letters, 2012, 101(15): 151108.

[17] Rösch M, Scalari G, Beck M, et al. Octave-spanning semiconductor laser[J]. Nature Photonics, 2015, 9(1): 42-47.

[18] Kumar S, Hu Q, Reno J L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design[J]. Applied Physics Letters, 2009, 94(13): 131105.

[19] Kumar S. Chan C W I, Hu Q, et al. A 1.8-THz quantum cascade laser operating significantly above the temperature of h-ω/kB[J]. Nature Physics, 2011, 7(2): 166-171.

[20] Bosco L, Franckié M, Scalari G, et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K[J]. Applied Physics Letters, 2019, 115(1): 010601.

[21] Brandstetter M, Deutsch C, Krall M, et al. High power terahertz quantum cascade lasers with symmetric wafer bonded active regions[J]. Applied Physics Letters, 2013, 103(17): 171113.

[22] Li L H, Chen L, Freeman J R, et al. Multi-Watt high-power THz frequency quantum cascade lasers[J]. Electronics Letters, 2017, 53(12): 799-800.

[23] Wang X M, Shen C L, Jiang T, et al. High-power terahertz quantum cascade lasers with ~0.23 W in continuous wave mode[J]. AIP Advances, 2016, 6(7): 075210.

[24] Wan W J, Li H, Cao J C. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation[J]. Optics Express, 2018, 26(2): 980-989.

[25] Kumar S, Williams B S, Qin Q, et al. Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides[J]. Optics Express, 2007, 15(1): 113-128.

[26] Xu G Y, Colombelli R, Khanna S P, et al. Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures[J]. Nature Communications, 2012, 3: 952.

[27] Xu G Y, Li L H, Isac N, et al. Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range[J]. Applied Physics Letters, 2014, 104(9): 091112.

[28] Jin Y, Gao L, Chen J, et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings[J]. Nature Communications, 2018, 9(1): 1407.

[29] Amanti M I, Fischer M, Scalari G, et al. Low-divergence single-mode terahertz quantum cascade laser[J]. Nature Photonics, 2009, 3(10): 586-590.

[30] Wu C Z, Khanal S, Reno J L, et al. Terahertz plasmonic laser radiating in an ultra-narrow beam[J]. Optica, 2016, 3(7): 734-740.

[31] Biasco S, Garrasi K, Castellano F, et al. Continuous-wave highly-efficient low-divergence terahertz wire lasers[J]. Nature Communications, 2018, 9(1): 1122.

[32] Mujagic E, Deutsch C, Detz H, et al. Vertically emitting terahertz quantum cascade ring lasers[J]. Applied Physics Letters, 2009, 95(1): 011120.

[33] Liang G Z, Liang H K, Zhang Y, et al. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Optics Express, 2013, 21(26): 31872-31882.

[34] Chassagneux Y, Colombelli R, Maineult W, et al. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions[J]. Nature, 2009, 457(7226): 174-178.

[35] Sevin G, Fowler D, Xu G Y, et al. Optimized surface-emitting photonic-crystal terahertz quantum cascade lasers with reduced resonator dimensions[J]. Applied Physics Letters, 2010, 97(13): 131101.

[36] Vitiello M S, Nobile M, Ronzani A, et al. Photonic quasi-crystal terahertz lasers[J]. Nature Communications, 2014, 5: 5884.

[37] Biasco S, Beere H E, Ritchie D, et al. Frequency-tunable continuous-wave random lasers at terahertz frequencies[J]. Light-Science & Applications, 2019, 8(1): 43.

[38] Xu L Y, Curwen C A. Hon P W C, et al. Metasurface external cavity laser[J]. Applied Physics Letters, 2015, 107(22): 221105.

[39] Curwen C A, Reno J L, Williams B S. Terahertz quantum cascade VECSEL with watt-level output power[J]. Applied Physics Letters, 2018, 113(1): 011104.

[40] Xu L Y, Chen D G, Curwen C A, et al. Metasurface quantum-cascade laser with electrically switchable polarization[J]. Optica, 2017, 4(4): 468-475.

[41] Curwen C A, Reno J L, Williams B S. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL[J]. Nature Photonics, 2019, 13(12): 855-859.

[42] Wan W J, Li H, Zhou T, et al. Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation[J]. Scientific Reports, 2017, 7(1): 44109.

[43] Zhou K M, Li H, Wan W J, et al. Ridge width effect on comb operation in terahertz quantum cascade lasers[J]. Applied Physics Letters, 2019, 114(19): 191106.

[44] Li H, Yan M, Wan W J, et al. Graphene-coupled terahertz semiconductor lasers for enhanced passive frequency comb operation[J]. Advanced Science, 2019, 6(20): 1900460.

[45] Li Z P, Wan W J, Zhou K, et al. On-chip dual-comb source based on terahertz quantum cascade lasers under microwave double injection[J]. Physical Review Applied, 2019, 12(4): 044068.

[46] Li H, Li Z P, Wan W J, et al. Toward compact and real-time terahertz dual-comb spectroscopy employing a self-detection scheme[J]. ACS Photonics, 2020, 7(1): 49-56.

万文坚, 黎华, 曹俊诚. 太赫兹量子级联激光器研究进展[J]. 中国激光, 2020, 47(7): 0701009. Wan Wenjian, Li Hua, Cao Juncheng. Research Progress on Terahertz Quantum Cascade Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701009.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!