激光与光电子学进展, 2016, 53 (8): 081407, 网络出版: 2016-08-11  

激光直接金属沉积中激光束衰减的模拟研究

Numerical Simulation of Laser Attenuation in Laser Direct Metal Deposition
张冬云 1,2,*张晖峰 1,2董东东 1,2刘臻 1,2
作者单位
1 北京工业大学激光工程研究院, 北京 100124
2 北京市数字化医疗3D打印工程技术中心, 北京 100124
摘要
采用三维瞬态模型模拟了同轴激光直接金属沉积过程中激光束在基材附近穿过汇聚的钛金属粉末云时的衰减。采用射线追踪方法,计算了激光束受粉末影响部分被吸收、部分被散射后在各个方向的光强分布。考虑了激光波长和粒子数对激光衰减过程的影响。结果表明,具有均匀空间分布的0.01 g/mL钛粉末云对激光的吸收率为5.47%,激光束穿过粉末云时的衰减几乎不受波长影响,但随粒子数的增加而增强。数值模拟解与实验测得的1.06 μm处的粒子悬浮液透射率曲线相吻合。
Abstract
A comprehensive three-dimensional transient model is developed to analyze laser attenuation near substrate where the beam transmits through the converged titanium powder cloud. A ray tracing method is employed to calculate the intensity distribution in all the directions after the laser beam is partially absorbed and partially scattered by the powder cloud. The effect of laser wavelength and number of particles on the laser attenuation process is considered. The results show that the spatially uniformly distributed titanium powder cloud with a concentration of 0.01 g/mL exhibits an absorptivity of 5.47%. The laser attenuation process due to the powder cloud is barely influenced by wavelength and the attenuation increases as the number of particles increases. The simulated transmittance of power cloud at 1.06 μm fits the transmittance curve of particulate suspension.
参考文献

[1] Neto O O D, Vilar R. Physical-computational model to describe the interaction between a laser beam and a powder jet in laser surface processing[J]. Journal of Laser Application, 2002, 149(1): 46-51.

[2] Tabernero I, Martínez S, Ukar E, et al. Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process[J]. Journal of Materials Processing Technology, 2012, 212(2): 516-522.

[3] Chuan L T, Abidin M Y Z, Abdullah H Z, et al. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycero phosphate (β-GP) and calcium acetate (CA)[C]. Proceedings of the 23rd Scientific Conference of Microscopy Society, Malaysia, 2015, 1669: 020054.

[4] Wen S Y, Shin Y C. Modeling of transport phenomena during the coaxial laser direct deposition process[J]. Journal of Applied Physics, 2010, 108(4): 044908.

[5] Kong F R, Kovacevic R. Modeling of heat transfer and fluid flow in the laser multilayered cladding process[J]. Metallurgical and Materials Transactions B, 2010, 41(6): 1310-1320.

[6] Bamberger M, Kaplan W D, Medres B, et al. Calculation of process parameters for laser alloying and cladding[J]. Journal of Laser Application, 1998, 10(1): 29-33.

[7] Huan Q, Mazumder J, Green L, et al. Laser beam analysis in direct metal deposition process[J]. Journal of Laser Application, 2005, 17(3): 136-143.

[8] Kumar A, Roy S. Effect of three-dimensional melt pool convection on process characteristics during laser cladding[J]. Computational Materials Science, 2009, 46(2): 495-506.

[9] de Oliveira U, Ocelik V, de Hosson J T M. Analysis of coaxial laser cladding processing conditions[J]. Surface and Coatings Technology, 2005, 197(2): 127-136.

[10] Toyserkani E, Khajepour A, Corbin S. 3-D finite element modeling of laser cladding by powder injection: Effects of laser pulse shaping on the process[J]. Optics and Lasers in Engineering, 2004, 41(6): 849-867.

[11] Kovalev O B, Zaitsev A V, Novichenko D, et al. Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process[J]. Journal of Thermal Spray Technology, 2011, 20(3): 465-478.

[12] Devesse W, Baere D D, Guillaume P. Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing[J]. Journal of Laser Applications, 2015, 27(s2): s29208.

[13] Neto O O D, Alcalde A M, Vilar R. Interaction of a focused laser beam and a coaxial powder jet in laser surface processing[J]. Journal of Laser Application, 2007, 19(2): 84-88.

[14] Huan Q, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition[J]. Journal of Applied Physics, 2006, 100(2): 024903.

[15] Loh L E, Chua C K, Yeong W, et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061[J]. International Journal of Heat and Mass Transfer, 2015, 80: 288-300.

[16] Huang Y L, Liu J, Ma N H, et al. Three-dimensional analytical model on laser-powder interaction during laser cladding[J]. Journal of Laser Application, 2006, 18(1): 42-46.

[17] Tabernero I, Lamikiz A, Ukar E, et al. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding[J]. Journal of Materials Processing Technology, 2010, 210(15): 2125-2134.

[18] 叶云霞, 范滇元. 光通过纳米颗粒随机散射体透射光强的计算及分析[J]. 光学学报, 2007, 27(5): 951-956.

    Ye Yunxia, Fan Dianyuan. Calculation and analysis of intensity of transmitted light by random scatters with nanoparticles[J]. Acta Optica Sinica, 2007, 27(5): 951-956.

[19] Newhauser W D, Rechner L, Mirkovic D, et al. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams[J]. Radiation Measurement, 2013, 58: 37-44.

[20] Wang L H, Jacques S L, Zheng L Q. MCML - Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods and Programs in Biomedicine, 1995, 47(2): 131-146.

[21] Zurk L M, Tsang L, Ding K H, et al. Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and non-clustered geometries[J]. Journal of the Optical Society of America A, 1995, 12(8): 1772-1781.

[22] Pan T, Dali S S, Sevick-Muraca E M. Evaluation of photon migration using a two speed model for characterization of packed powder beds and dense particulate suspensions[J]. Optics Express, 2005, 13(10): 3600-3618.

[23] Taroni P, Tarvainen T, Kolehmainen V, et al. Utilising the coupled radiative transfer-diffusion model in diffuse optical tomography[C]. SPIE, 2013, 8799: 879907.

[24] Ntziachristos V, Tarvainen T, Pulkkinen A, et al. Image reconstruction in quantitative photoacoustic tomography using the radiative transfer equation and the diffusion approximation[C]. SPIE, 2013, 8800: 880006.

[25] Boley C D, Khairallah S A, Rubenchik A M. Calculation of laser absorption by metal powders in additive manufacturing[J]. Applied Optics, 2015, 54(9): 2477-2482.

[26] Zhou X B, Li S S, Stamnes K. Geometrical-optics code for computing the optical properties of large dielectric spheres[J]. Applied Optics, 2003, 42(21): 4295-4306.

[27] Shen J Q, Wang H R. Calculation of Debye series expansion of light scattering[J]. Applied Optics, 2010, 49(13): 2422-2428.

[28] 刘立峰, 董丽莹, 董玲, 等. 激光制造中同轴粉末流场分析与检测[J]. 激光与光电子学进展, 2014, 51(8): 081405.

    Liu Lifeng, Dong Liying, Dong Ling, et al. Research of coaxial powder stream field in laser manufacturing[J]. Laser & Optoelectronics Progress, 2014, 51(8): 081405.

[29] 马广义, 王江田, 牛方勇, 等. 粉末分布对激光近净成形Al2O3陶瓷薄壁件表面形貌的影响[J]. 中国激光, 2015, 42(1): 0103006.

    Ma Guangyi, Wang Jiangtian, Niu Fangyong, et al. Influence of powder distribution on the Al2O3 thin-wall ceramic formed by laser engineered net shaping[J]. Chinese J Lasers, 2015, 42(1): 0103006.

[30] Medina J I, Pinkerton A J. A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding[J]. Physics Procedia, 2010, 5: 337-346.

[31] Dingle K, Lamb J S W, Lázaro-Camí J A. Knudsen′s law and random billiards in irrational triangles[J]. Nonlinearity, 2012, 26(2): 369-388.

[32] 王补宣, 李春辉, 彭晓峰. 纳米颗粒悬浮液稳定性分析[J]. 应用基础与工程科学学报, 2003, 11(2): 167-173.

    Wang Buxuan, Li Chunhui, Peng Xiaofeng. Stability analysis of nanoparticle suspension[J]. Journal of Basic Science and Engineering, 2003, 11(2): 167-173.

[33] Burger T, Ploss H J, Kuhn J, et al. Diffuse reflectance and transmittance spectroscopy for the quantitative determination of scattering and absorption coefficients in quantitative powder analysis[J]. Applied Spectroscopy, 1997, 51(9): 1323-1329.

[34] 夏长明, 田洪春, 侯峙云, 等. 基于掺杂粉末直拉棒工艺掺镱光子晶体光纤激光特性[J]. 中国激光, 2016, 43(2): 0205001.

    Xia Changming, Tian Hongchun, Hou Zhiyun, et al. Laser performance of Yb3+-doped photonic crystal fiber using the powder sinter direction drawn rod technology[J]. Chinese J Lasers, 2016, 43(2): 0205001.

张冬云, 张晖峰, 董东东, 刘臻. 激光直接金属沉积中激光束衰减的模拟研究[J]. 激光与光电子学进展, 2016, 53(8): 081407. Zhang Dongyun, Zhang Huifeng, Dong Dongdong, Liu Zhen. Numerical Simulation of Laser Attenuation in Laser Direct Metal Deposition[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081407.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!