Frontiers of Optoelectronics, 2010, 3 (3): 317, 网络出版: 2012-09-20  

Tunable wettability of metallic films with assistance of porous anodic aluminum oxide

Tunable wettability of metallic films with assistance of porous anodic aluminum oxide
作者单位
1 Division of Energy and Environmental Research, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
2 School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Advanced Technology Institute, Technology Center of Baosteel, Shanghai 201900, China
引用该论文

Dongdong LI, Chuanhai JIANG, Jiankun ZHOU, Xin REN. Tunable wettability of metallic films with assistance of porous anodic aluminum oxide[J]. Frontiers of Optoelectronics, 2010, 3(3): 317.

Dongdong LI, Chuanhai JIANG, Jiankun ZHOU, Xin REN. Tunable wettability of metallic films with assistance of porous anodic aluminum oxide[J]. Frontiers of Optoelectronics, 2010, 3(3): 317.

参考文献

[1] Ko H, Zhang Z X, Chueh Y L, Ho J C, Lee J, Fearing R S, Javey A. Wet and dry adhesion properties of self-selective nanowire connectors. Advanced Functional Materials, 2009, 19(19): 3098-3102

[2] Lu J G, Chang P C, Fan Z Y. Quasi-one-dimensional metal oxide materials — synthesis, properties and applications. Materials Science and Engineering: R: Reports, 2006, 52(1-3): 49-91

[3] Hurst S J, Payne E K, Qin L D, Mirkin C A. Multisegmented onedimensional nanorods prepared by hard-template synthetic methods. Angewandte Chemie, 2006, 45(17): 2672-2692

[4] Martin C R. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266(5193): 1961-1966

[5] Li D, Jiang C, Jiang J, Lu J G. Self-assembly of periodic serrated nanostructures. Chemistry of Materials, 2009, 21(2): 253-258

[6] Li D, Thompson R S, Bergmann G, Lu J G. Template-based synthesis and magnetic properties of cobalt nanotube arrays. Advanced Materials, 2008, 20(23): 4575-4578

[7] Liu ZW, Chang P C, Chang C C, Galaktionov E, Bergmann G, Lu J G. Shape anisotropy and magnetization modulation in hexagonal cobalt nanowires. Advanced Functional Materials, 2008, 18(10): 1573-1578

[8] Qu M, Zhao G Y, Wang Q, Cao X P, Zhang J. Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates. Nanotechnology, 2008, 19(19): 055707

[9] Taberna P L, Mitra S, Poizot P, Simon P, Tarascon J-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 2006, 5(7): 567-573

[10] Ding G Q, Shen W Z, Zheng M J, Xu W L, He Y L, Guo Q X. Fabrication of highly ordered nanocrystalline Si:H nanodots for the application of nanodevice arrays. Journal of Crystal Growth, 2005, 283(3-4): 339-345

[11] Lei Y, Chim W K, Weissmuller J, Wilde G, Sun H P, Pan X Q. Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates. Nanotechnology, 2005, 16(9): 1892-1898

[12] Li A P, Müller F, Birner A, Nielsch K, G sele U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by selforganization in anodic alumina. Journal of Applied Physics, 1998, 84(11): 6023-6026

[13] Lee W, Ji R, Gasele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials, 2006, 5(9): 741-747

[14] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1-8

[15] Parkin I P, Palgrave R G. Self-cleaning coatings. Journal of Materials Chemistry, 2005, 15(17): 1689-1695

[16] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H, Fotakis C. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Advanced Materials, 2008, 20(21): 4049-4054

[17] Blossey R. Self-cleaning surfaces — virtual realities. Nature Materials, 2003, 2(5): 301-306

[18] Callies M, Quere D. On water repellency. Soft Matter, 2005, 1(1): 55-61

[19] Nakajima A, Hashimoto K, Watanabe T. Recent studies on superhydrophobic films. Monatshefte Fur Chemie, 2001, 132(1): 31-41

[20] Hsu S H, Sigmund W M. Artificial hairy surfaces with a nearly perfect hydrophobic response. Langmuir, 2010, 26(3): 1504-1506

[21] Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936, 28: 988-994

[22] Cassie A B D, Baxter S.Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40: 0546-0550

[23] Krupenkin T N, Taylor J A, Schneider T M, Yang S. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir, 2004, 20(10): 3824-3827

[24] Dorrer C, Ruhe J. Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Advanced Materials, 2008, 20(1): 159-163

[25] Furstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and selfcleaning properties of artificial superhydrophobic surfaces. Langmuir, 2005, 21(3): 956-961

Dongdong LI, Chuanhai JIANG, Jiankun ZHOU, Xin REN. Tunable wettability of metallic films with assistance of porous anodic aluminum oxide[J]. Frontiers of Optoelectronics, 2010, 3(3): 317. Dongdong LI, Chuanhai JIANG, Jiankun ZHOU, Xin REN. Tunable wettability of metallic films with assistance of porous anodic aluminum oxide[J]. Frontiers of Optoelectronics, 2010, 3(3): 317.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!