Frontiers of Optoelectronics, 2010, 3 (3): 317, 网络出版: 2012-09-20  

Tunable wettability of metallic films with assistance of porous anodic aluminum oxide

Tunable wettability of metallic films with assistance of porous anodic aluminum oxide
作者单位
1 Division of Energy and Environmental Research, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
2 School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Advanced Technology Institute, Technology Center of Baosteel, Shanghai 201900, China
摘要
Abstract
The present work demonstrates a simple method to prepare nanostructured Ni films with different morphologies with the assistance of porous anodic aluminum oxide (AAO) membranes. A great distinction is observed as the Ni films deposited onto the top and bottom sides of AAO membranes. The wetting properties of as-prepared membranes are investigated by measuring the contact angles of water on the surfaces. Results show that the static water contact angle changes dramatically from 124°×1° to 45°×1° on different Ni films, implying a change of the wettability from hydrophobicity to hydrophilicity affected by the surface patterns. This versatile approach can be conducted on various materials with potential applications in a broad range of fields.
参考文献

[1] Ko H, Zhang Z X, Chueh Y L, Ho J C, Lee J, Fearing R S, Javey A. Wet and dry adhesion properties of self-selective nanowire connectors. Advanced Functional Materials, 2009, 19(19): 3098-3102

[2] Lu J G, Chang P C, Fan Z Y. Quasi-one-dimensional metal oxide materials — synthesis, properties and applications. Materials Science and Engineering: R: Reports, 2006, 52(1-3): 49-91

[3] Hurst S J, Payne E K, Qin L D, Mirkin C A. Multisegmented onedimensional nanorods prepared by hard-template synthetic methods. Angewandte Chemie, 2006, 45(17): 2672-2692

[4] Martin C R. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266(5193): 1961-1966

[5] Li D, Jiang C, Jiang J, Lu J G. Self-assembly of periodic serrated nanostructures. Chemistry of Materials, 2009, 21(2): 253-258

[6] Li D, Thompson R S, Bergmann G, Lu J G. Template-based synthesis and magnetic properties of cobalt nanotube arrays. Advanced Materials, 2008, 20(23): 4575-4578

[7] Liu ZW, Chang P C, Chang C C, Galaktionov E, Bergmann G, Lu J G. Shape anisotropy and magnetization modulation in hexagonal cobalt nanowires. Advanced Functional Materials, 2008, 18(10): 1573-1578

[8] Qu M, Zhao G Y, Wang Q, Cao X P, Zhang J. Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates. Nanotechnology, 2008, 19(19): 055707

[9] Taberna P L, Mitra S, Poizot P, Simon P, Tarascon J-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 2006, 5(7): 567-573

[10] Ding G Q, Shen W Z, Zheng M J, Xu W L, He Y L, Guo Q X. Fabrication of highly ordered nanocrystalline Si:H nanodots for the application of nanodevice arrays. Journal of Crystal Growth, 2005, 283(3-4): 339-345

[11] Lei Y, Chim W K, Weissmuller J, Wilde G, Sun H P, Pan X Q. Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates. Nanotechnology, 2005, 16(9): 1892-1898

[12] Li A P, Müller F, Birner A, Nielsch K, G sele U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by selforganization in anodic alumina. Journal of Applied Physics, 1998, 84(11): 6023-6026

[13] Lee W, Ji R, Gasele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials, 2006, 5(9): 741-747

[14] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1-8

[15] Parkin I P, Palgrave R G. Self-cleaning coatings. Journal of Materials Chemistry, 2005, 15(17): 1689-1695

[16] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H, Fotakis C. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Advanced Materials, 2008, 20(21): 4049-4054

[17] Blossey R. Self-cleaning surfaces — virtual realities. Nature Materials, 2003, 2(5): 301-306

[18] Callies M, Quere D. On water repellency. Soft Matter, 2005, 1(1): 55-61

[19] Nakajima A, Hashimoto K, Watanabe T. Recent studies on superhydrophobic films. Monatshefte Fur Chemie, 2001, 132(1): 31-41

[20] Hsu S H, Sigmund W M. Artificial hairy surfaces with a nearly perfect hydrophobic response. Langmuir, 2010, 26(3): 1504-1506

[21] Wenzel R N. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1936, 28: 988-994

[22] Cassie A B D, Baxter S.Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40: 0546-0550

[23] Krupenkin T N, Taylor J A, Schneider T M, Yang S. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir, 2004, 20(10): 3824-3827

[24] Dorrer C, Ruhe J. Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Advanced Materials, 2008, 20(1): 159-163

[25] Furstner R, Barthlott W, Neinhuis C, Walzel P. Wetting and selfcleaning properties of artificial superhydrophobic surfaces. Langmuir, 2005, 21(3): 956-961

Dongdong LI, Chuanhai JIANG, Jiankun ZHOU, Xin REN. Tunable wettability of metallic films with assistance of porous anodic aluminum oxide[J]. Frontiers of Optoelectronics, 2010, 3(3): 317. Dongdong LI, Chuanhai JIANG, Jiankun ZHOU, Xin REN. Tunable wettability of metallic films with assistance of porous anodic aluminum oxide[J]. Frontiers of Optoelectronics, 2010, 3(3): 317.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!