激光与光电子学进展, 2018, 55 (10): 100006, 网络出版: 2018-10-14   

单晶光纤放大器研究进展 下载: 1071次

Research Progress in Single-Crystal Fiber Amplifiers
作者单位
北京理工大学光电学院, 北京 100081
摘要
单晶光纤处于光纤和晶体介质之间的特殊结构使其同时具备光纤和晶体介质的优点。单晶光纤的增益高, 热管理简单, 非线性效应对其影响小, 在超短脉冲放大中得到了广泛应用。对单晶光纤放大器在超短脉冲放大中的研究进展进行了综述。介绍了单晶光纤常用的两种制备方法, 微拉伸法和激光加热基座法; 以提升单晶光纤放大器放大效率的各种方法作为主线, 分别介绍了Nd∶YAG和Yb∶YAG掺杂下的单晶光纤放大器以及一些具有特殊结构的新型单晶光纤放大器在超短脉冲放大中的研究进展; 对单晶光纤放大器的应用前景以及未来发展趋势进行了展望。
Abstract
Owing to the special structure between fiber and crystal, single-crystal fiber has the merits of both fiber and crystal medium. For its advantages of high gain, simple thermal management, and small nonlinear effect, single-crystal fiber is widely used in ultrashort pulse amplification. The experimental research progress in single-crystal fiber amplifiers is reviewed. Firstly, two kinds of single-crystal fiber preparation methods including micro-pulling down technique and laser heated pedestal growth technique are introduced. Then along the principal clue of various means to improve the amplification performance of single-crystal fiber amplifiers, we summarize the research progress in Nd∶YAG and Yb∶YAG doped single-crystal fiber amplifiers and some new amplifiers with special structures in ultrashort pulse amplification. Finally, the applications and future development trends of single-crystal fiber amplifiers are prospected.
参考文献

[1] Raciukaitis G, Brikas M, Geys P, et al. Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high [J]. Journal of Laser Micro/Nanoengineering, 2009, 4(3): 186-191.

[2] Neuenschwander B, Bucher G F, Nussbaum C, et al. Processing of metals and dielectric materials with ps-laser pulses: results, strategies, limitations and needs[J].Proceedings of SPIE, 2010, 7584: 75840R.

[3] 杨冬冬, 蔡京辉. 皮秒激光微纳加工研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010004.

    Yang D D, Cai J H. Research progress of micro-nano fabrication by picosecond laser[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010004.

[4] 边晓微, 陈檬, 李港. 355 nm纳秒和1064 nm皮秒激光加工蓝宝石研究[J]. 激光与光电子学进展, 2016, 53(5): 051404.

    Bian X W, Chen M, Li G. Study on machining of sapphire by 355 nm nanosecond and 1064 nm picosecond laser[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051404.

[5] Martial I, Balembois F, Didierjean J, et al. Nd∶YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond[J]. Optics Express, 2011, 19(12): 11667-11679.

[6] Eidam T, Hanf S, Andersen T V, et al. 830 W average power femtosecond fiber CPA system[J]. Advanced Solid, 2010, 35(2): 94-96.

[7] Jansen F, Stutzki F, Eidam T, et al. Yb-doped large pitch fiber with 105 μm mode field diameter[C]∥Optical Fiber Communication Conference, OSA, 2011: OTuC5.

[8] Han Q, Ning J P, Zhou L, et al. Impact of ASE on high power Er/Yb co-doped fiber pulse amplifiers[J]. Laser Technology, 2009, 33(5): 541-544.

[9] 罗亿, 王小林, 张汉伟, 等. 光纤放大器放大自发辐射特性与高温易损点位置[J]. 物理学报, 2017, 23(66): 234206.

    Luo Y, Wang X L, Zhang H W, et al. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers[J]. Acta Physica Sinica, 2017, 66(23): 234206.

[10] Mortensen N A. Effective area of photonic crystal fibers[J]. Optics Express, 2002, 10(7): 341-348.

[11] 何洋, 韩群, 宁继平, 等. 高功率脉冲Er-Yb共掺光纤放大器中放大自发辐射的抑制方法[J]. 中国激光, 2012, 39(10): 1002004.

    He Y, Han Q, Ning J P, et al. Suppressing amplified spontaneous emission in high-power pulsed Er-Yb codoped fiber amplifiers[J]. Chinese Journal of Lasers, 2012, 39(10): 1002004.

[12] Okishev A V. Highly efficient room-temperature Yb∶YAG ceramic laser and regenerative amplifier[J]. Optics Letters, 2012, 37(7): 1199-1201.

[13] Metzger T, Schwarz A, Teisset C Y, et al. High-repetition-rate picosecond pump laser based on a Yb∶YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 2009,34(14): 2123-2125.

[14] Schulz M, Riedel R, Willner A, et al. Yb∶YAG InnoSlab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification[J]. Optics Letters, 2011, 36(13): 2456-2458.

[15] 徐浏. LD泵浦InnoSlab激光振荡器和放大器研究[D]. 北京: 北京理工大学, 2015.

    Xu L. LD-pumped InnoSlab laser oscillators and amplifiers[D]. Beijing: Beijing Institute of Technology, 2015.

[16] Jarman R H, Wallenberg A J, Thrash R J. Growth and fabrication of single-crystal Yb,Tm∶BaY2F8 fibers for upconversion visible laser operation[J]. Proceedings of SPIE, 1993, 1863: 106-113.

[17] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 1961, 32(1): 36-39.

[18] 侯印春. 单晶光纤[J]. 激光与光电子学进展, 1988, 25(7): 23-26.

    Hou Y C. Single-crystal fiber[J]. Laser & Optoelectronics Progress, 1988, 25(7): 23-26.

[19] Boulon G. Combinatorial chemistry to grow single crystals and analysis of concentration quenching processes: application to Yb3+-doped laser crystals[M]∥Frontiers of optical spectroscopy. Netherlands: Springer, 2005: 689-714.

[20] Lebbou K, Perrodin D, Chani V I, et al. Fiber single-crystal growth from the melt for optical applications[J]. Journal of the American Ceramic Society, 2006, 89(1): 75-80.

[21] 顾菊观, 沈永行, 陈曙英, 等. LHPG法单晶光纤生长中的熔区控制技术[J]. 材料科学与工程学报, 2001, 19(4): 20-23.

    Gu Y G, Shen Y X, Chen S Y, et al. Molten zone controlling technique of single crystal fiber by means of LHPG growth[J]. Materials Science & Engineering, 2001, 19(4): 20-23.

[22] 叶林华, 宋丽, 李刚, 等. LED白光源用Ce3+∶YAG单晶光纤制备与特性[J]. 光学学报, 2009, 29(s1): 169-171.

    Ye L H, Song L, Li G, et al. Growth and characteristics of Ce3+ ions-doped YAG single-crystal optical fibers for LED white light sources[J]. Acta Optica Sinica, 2009, 29(s1): 169-171.

[23] Li Y, Johnson E G, Nie C D, et al. Ho∶YAG single crystal fiber: fabrication and optical characterization[J]. Optics Express, 2014, 22(12): 14896-14903.

[24] Rapaport A, Zhao S Z, Xiao G H, et al. Temperature dependence of the 106-μm stimulated emission cross section of neodymium in YAG and in GSGG[J]. Applied Optics, 2002, 41(33): 7052-7057.

[25] Kuznetsov I, Mukhin I B, Palashov O V, et al. Thin-tapered-rod Yb∶YAG laser amplifier[J]. Optics Letters, 2016, 41(22): 5361-5364.

[26] Martial I, Ferguson H, Douri N, et al. Amplification of a passively Q-switched Nd∶YAG microlaser in a crystal fiber[C]∥Advanced Solid-State Photonics, OSA, 2010: AMB11.

[27] Martial I, Balembois F, Didierjean J, et al. 2.5 mJ, sub-nanosecond pulses from single-crystal fiber amplifier in a kHz MOPA system[C]∥Advanced Solid-State Photonics, OSA, 2011: ATuB6.

[28] Martial I, Balembois F, Didierjean J, et al. High energy, high peak power (2.6 mJ/5.6 MW) or high average power (20 W) Nd∶YAG single-crystal fiber amplifier in a sub-ns kHz system[C]∥ Lasers and Electro-Optics Europe, IEEE, 2011: CA7_2.

[29] Rodin A, Aleknavicius A, Michailovas A, et al. Beam quality investigation in Nd∶YAG crystal fiber amplifier pumped at > 110 W[J]. Proceedings of SPIE, 2015, 9342: 934207.

[30] Zaouter Y, Martial I, Delen X, et al. 12 W, 350 fs ultrashort pulses from a micro-pulling down Yb∶YAG single crystal fiber amplifier[C]∥Lasers and Electro-Optics Europe, IEEE, 2011: CA6_3.

[31] Délen X, Zaouter Y, Martial I, et al. Yb∶YAG single crystal fiber power amplifier for femtosecond sources[J]. Optics Letters, 2013, 38(2): 109-111.

[32] Piehler S, Delen X, Didierjean J, et al. High power amplification in Yb∶YAG single crystal fibers[C]∥Conference on Lasers and Electro-Optics, IEEE, 2013: CA4_4.

[33] Saby J, Sangla D, Deslandes P, et al. Non-CPA high energy picosecond laser based on single-crystal fiber amplifier[C]∥Advanced Solid-State Lasers, OSA, 2014: ATh2A.28.

[34] 赵智刚, 董延涛, 潘孙强, 等. 50 W量级双端抽运Nd∶YVO4基模固体激光振荡器[J]. 中国激光, 2011, 38(9): 0902001.

    Zhao Z G, Dong Y T, Pan S Q, et al. 50 W class double-end-pumped Nd∶YVO4 TEM00 mode solid state laser oscillator[J]. Chinese Journal of Lasers, 2011, 38(9): 0902001.

[35] 王君涛, 汪丹, 苏华, 等. Nd∶YAG平面波导激光放大器效率的影响因素[J]. 中国激光, 2017, 44(12): 1201005.

    Wang J T, Wang D, Su H, et al. Influence factors on efficiency of Nd∶YAG planar waveguide laser amplifier[J]. Chinese Journal of Lasers, 2017, 44(12): 1201005.

[36] Markovic V, Rohrbacher A, Hofmann P, et al. 100 W class compact Yb∶YAG single crystal fiber amplifier for femtosecond lasers without CPA[J]. Proceedings of SPIE, 2016, 9726: 972609.

[37] Rodin A, Rusteika N, Slavinskis N. 30 W thin Yb∶YAG rod chirped pulse amplifier with high output beam quality[J]. Journal of Antimicrobial Chemotherapy, 2016, 70(1): 257-263.

[38] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577.

[39] Kienel M, Muller M, Demmler S, et al. Coherent beam combination of Yb∶YAG single-crystal rod amplifiers[J]. Optics Letters, 2014, 39(11): 3278-3281.

[40] Zaouter Y, Guichard F, Daniault L, et al. Power and energy scaling of ultrafast fiber systems using chirped and divided pulse amplification for high end applications[C]∥International Quantum Electronics Conference, 2013: CTu1K.2.

[41] Pouysegur J, Weichelt B, Guichard F, et al. Simple Yb∶YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 2016, 24(9): 9896-9904.

[42] Lesparre F, Gomes J T, Delen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

王雅兰, 王庆. 单晶光纤放大器研究进展[J]. 激光与光电子学进展, 2018, 55(10): 100006. Wang Yalan, Wang Qing. Research Progress in Single-Crystal Fiber Amplifiers[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100006.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!