Frontiers of Optoelectronics, 2016, 9 (2): 277, 网络出版: 2016-10-21  

Plasmonic light trapping for wavelength-scale silicon solar absorbers

Plasmonic light trapping for wavelength-scale silicon solar absorbers
作者单位
1 Centre for Micro-Photonics, Faculty of Science, Engineering and Industrial Sciences, Swinburne University of Technology,Hawthorn VIC 3122, Australia
2 Artificial-Intelligence Nanophotonics Laboratory, School of Science, RMIT University, Melbourne VIC 3001, Australia
摘要
Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiNx hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.
Abstract
Light trapping is of critical importance for constructing high efficiency solar cells. In this paper, we first reviewed the progress we made on the plasmonic light trapping on Si wafer solar cells, including Al nanoparticle (NP)/SiNx hybrid plasmonic antireflection and the Ag NP light trapping for the long-wavelength light in ultrathin Si wafer solar cells. Then we numerically explored the maximum light absorption enhancement by a square array of Ag NPs located at the rear side of ultrathin solar cells with wavelength-scale Si thickness. Huge absorption enhancement is achieved at particular long wavelengths due to the excitation of the plasmon-coupled guided resonances. The photocurrent generated in 100 nm thick Si layers is 6.8 mA/cm2, representing an enhancement up to 92% when compared with that (3.55 mA/cm2) of the solar cells without the Ag NPs. This study provides the insights of plasmonic light trapping for ultrathin solar cells with wavelength-scale Si thickness.
参考文献

[1] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213

[2] Gu M, Ouyang Z, Jia B, Stokes N, Chen X, Fahim N, Li X, Ventura M, Shi Z. Nanoplasmonics: a frontier of photovoltaic solar cells. Nanophotonics, 2012, 1(3-4): 235–248

[3] Zhang Y, Stokes N, Jia B, Fan S, Gu M. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Scientific Reports, 2014, 4: 4939

[4] Zhang Y, Ouyang Z, Stokes N, Jia B, Shi Z, Gu M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Applied Physics Letters, 2012, 100(15): 151101

[5] Zhang Y, Chen X, Ouyang Z, Lu H, Jia B, Shi Z, Gu M. Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating. Optical Materials Express, 2013, 3 (4): 489–495

[6] Zhang Y, Jia B, Ouyang Z, Gu M. Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells. Journal of Applied Physics, 2014, 116(12): 124303

[7] Derkacs D, Lim S, Matheu P, Mar W, Yu E. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006, 89(9): 093103

[8] Eminian C, Haug F, Cubero O, Niquille X, Ballif C. Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 260–265

[9] Chen X, Jia B, Saha J K, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 2012, 12(5): 2187–2192

[10] Lare M, Lenzmann F, Verschuuren M, Polman A. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells. Applied Physics Letters, 2012, 101(22): 221110

[11] Nakayama K, Tanabe K, Atwater H. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Applied Physics Letters, 2008, 93(12): 121904

[12] Beck F, Mokkapati S, Catchpole K. Plasmonic light-trapping for Si solar cells using self-assembled Ag nanoparticles. Progress in Photovoltaics: Research and Applications, 2010, 18(7): 500–504

[13] Yang Y, Pillai S, Mehrvarz H, Kampwerth H, Ho-Baillie A, Green M. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Solar Energy Materials and Solar Cells, 2012, 101: 217–226

[14] Temple T, Mahanama G, Reehal H, Bagnall D. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1978–1985

[15] Xu R, Wang X, Song L, Liu W, Ji A, Yang F, Li J. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 2012, 20(5): 5061– 5068

[16] Chen X, Jia B, Zhang Y, Gu M. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light, Science & Applications, 2013, 2(8): e92

[17] Fahim N, Ouyang Z, Jia B, Zhang Y, Shi Z, Gu M. Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings. Applied Physics Letters, 2012, 101(26): 261102

[18] Fahim N, Ouyang Z, Zhang Y, Jia B, Shi Z, Gu M. Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process. Optical Materials Express, 2012, 2(2): 190–204

[19] H gglund C, Z ch M, Petersson G, Kasemo B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Applied Physics Letters, 2008, 92(5): 053110

[20] Grandidier J, Callahan D M, Munday J N, Atwater H A. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Advanced Materials, 2011, 23(10): 1272–1276

[21] Kang G, Park H, Shin D, Baek S, Choi M, Yu D H, Kim K, Padilla WJ. Broadband light-trapping enhancement in an ultrathin film a-Si absorber using whispering gallery modes and guided wave modes with dielectric surface-textured structures. Advanced Materials, 2013, 25(18): 2617–2623

[22] Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460

[23] Spinelli P, Polman A. Light trapping in thin crystalline Si solar cells using surface Mie scatters. IEEE Journal of Photovoltaics, 2014, 4 (2): 554–559

[24] Kim I, Jeong D S, LeeWS, KimWM, Lee T S, Lee D K, Song J H, Kim J K, Lee K S. Silicon nanodisk array design for effective light trapping in ultrathin c-Si. Optics Express, 2014, 22(Suppl 6): A1431–A1439

[25] Wang K X, Yu Z, Liu V, Cui Y, Fan S. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and lighttrapping nanocone gratings. Nano Letters, 2012, 12(3): 1616–1619

[26] Jeong S, McGehee M D, Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature Communications, 2013, 4: 2950

[27] Branham MS, HsuWC, Yerci S, Loomis J, Boriskina S V, Hoard B R, Han S E, Chen G. 15.7% efficient 10-mm-thick crystalline silicon solar cells using periodic nanostructures. Advanced Materials, 2015, 27(13): 2182–2188

[28] Kwon J Y, Lee D H, Chitambar M, Maldonado S, Tuteja A, Boukai A. High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates. Nano Letters, 2012, 12(10): 5143–5147

[29] Karakasoglu I, Wang K, Fan S. Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells. ACS Photonics, 2015, 2(7): 883–889

[30] Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41): 17491– 17496

[31] FDTD solutions, Lumerical, Toronto, Canada

[32] Palik E. Handbook of Optical Constants of Solids. London: Elsevier, 1988

[33] Green M. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficient. Solar Energy Materials and Solar Cells, 2008, 92(11): 1305–1310

Yinan ZHANG, Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Frontiers of Optoelectronics, 2016, 9(2): 277. Yinan ZHANG, Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Frontiers of Optoelectronics, 2016, 9(2): 277.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!