光子学报, 2019, 48 (11): 1148013, 网络出版: 2019-12-10   

基于下陷内包层设计的大芯径掺氟光纤表征及性能

Characterization and Properties of Large-core Fluorine-doped Fibers Based on Depressed Inner Cladding Design
作者单位
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
2 中国科学院大学, 北京 100049
3 陕西师范大学 物理学与信息技术学院,西安 710119
摘要
采用体式显微镜、扫描电子显微镜、拉曼光谱表征了不同氟浓度、波导结构条件下光纤预制棒锥区及光纤的表面形貌与微观结构,用光纤综合参数分析仪、自制输出激光刀头分析了大芯径掺氟包层光纤的损耗、激光传输效率.结果表明: 随着氟含量的升高,氟挥发现象愈加明显,传统大芯径掺氟包层光纤表面产生的裂纹、凹坑等缺陷增多,光纤损耗略有增加,激光传输效率下降; 采用下陷掺氟内包层设计有效抑制了大芯径掺氟包层光纤制备过程中的氟挥发、析晶现象,1 200 nm波段光纤损耗为3.99 dB/km,平形和球形光纤2 μm波段的激光传输效率分别达到88.9%和88.4%,性能明显高于传统结构光纤.
Abstract
The surface morphology and microstructure of fiber preform taper zones and fibers with different fluorine content and waveguide structure were characterized by stereomicroscopy, scanning electron microscopy and Raman spectroscopy. The loss and laser transmission efficiency of large-core fibers with fluorine-doped cladding were analyzed by fiber analysis system and self-made output laser probe. The results show that the fluorine volatilization phenomenon becomes more obvious with the increase of fluorine content. As a result, the surface defects of traditional large-core fibers with fluorine-doped cladding increase, such as cracks and pits. Simultaneously, the fiber loss increases slightly and the laser transmission efficiency decreases. Moreover, the fluorine volatilization and crystallization during the fabrication process of large-core fibers with fluorine-doped cladding are effectively suppressed through subsidence fluorine-doped inner cladding design. Thus, the fiber loss at 1 200 nm is 3.99 dB/km, and the laser transmission efficiency at 2 μm of flat and spherical fibers is 88.9% and 88.4%, respectively. It can be obviously seen that its property is better than that of traditional fibers.
参考文献

[1] OZGUR Y, MITSUNOBU M, YUJI M. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd: YAG laser pulses[J]. Applied Optics, 2006, 45(27): 7174-7178.

[2] 赵兴海, 高杨, 徐美健, 等. 高峰值功率脉冲激光的光纤传能特性[J]. 红外与激光工程, 2008, 37(3): 444-448.

    ZHAO Xing hai,GAO Yang, XU Mei-jian, et al. Power delivery characteristics of fiber s for high peak power pulse laser[J]. Infrared and Laser Engineering, 2008, 37(3): 444-448.

[3] KAJIHARA K, HIRANO M, SKUJA L, et al. 60Co γ-ray-induced intrinsic defect processes in fluorine-doped synthetic SiO2 glasses of different fluorine concentrations[J]. Materials Science and Engineering: B, 2009, 161(1-3): 96-99.

[4] JAUREGUI C, LIMPERT J, TNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

[5] OKAMOTO K, TOH K, NAGATA S,et al. Temperature dependence of radiation induced optical transmission loss in fused silica core optical fibers[J]. Journal of Nuclear Materials, 2004, 329-333(Part B): 1503-1506.

[6] CALDERN A, MARTNEZ-RIVERO C, MATORRAS F, et al. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565(2): 599-602.

[7] NILSSON J, PAYNE D N. High-power fiber lasers[J]. Science, 2011, 332: 921-922.

[8] 江源, 陈莉, 朱云青, 等. 光纤在激光医学治疗上的应用[J]. 激光杂志, 2007, 28(4): 9-11.

    JIANG Yuan, CHEN Li, ZHU Yun-qing, et al. Application of optical fibers to laser medical therapy[J]. Laser Journal, 2007, 28(4): 9-11.

[9] DI F D, BOUKENTER A, AGNELLO S, et al. X-ray irradiation effects on fluorine-doped germanosilicate optical fibers[J]. Optical Materials Express, 2014, 4(8): 1683-1695.

[10] KIM Y, JU S, JEONG S, et al. Gamma-ray radiation response at 1550 nm of fluorine-doped radiation hard single-mode optical fiber[J]. Optics Express, 2016, 24(4): 3910-3920.

[11] KABIR S, RAZZAK S M A. Bending resistive improved effective mode area fluorine doped quadrilateral shaped core photonic crystal fiber for high power fiber lasers[J]. Optik, 2018, 162: 206-213.

[12] SAEED M A, HOSSAIN I, NURSYAZWANIE R, et al. Thermoluminescence response of multimode fluorine-doped SiO2 optical fibers and TLD 100 with 6 mega volt photon irradiation[J]. High Energy Chemistry, 2015, 49(3): 146-149.

[13] ZABEZHAILOV M O, TOMASHUK A L, NIKOLIN I V, et al. The role of fluorine-doped cladding in radiation-induced absorption of silica optical fibers[C]. IEEE Transactions on Nuclear Science, 2002, 49(3): 1410-1413.

[14] ORIGLIO G, BOUKENTER A, GIRARD S, et al. Irradiation induced defects in fluorine doped silica[J]. Nuclear Instruments and Methods in Physics Research Section B, 2008, 266(12-13), 2918-2922.

[15] GIORDANO D, ROMANO C, DINGWELL D B, et al. The combined effects of water and fluorine on the viscosity of silicic magmas[J]. Geochimica et Cosmochimica Acta, 2004, 68(24): 5159-5168.

[16] KIRCHHOF J, UNGER S. Thermodynamics of fluorine incorporation into silica glass[J]. Journal of Non-Crystalline Solids, 2008, 354(2-9): 540-545.

[17] YOUNGMAN R E, SEN S. The nature of fluorine in amorphous silica[J].Journal of Non-Crystalline Solids, 2004, 337(2): 182-186.

[18] YOUNGMAN R E, SEN S. Structural role of fluorine in amorphous silica[J].Journal of Non-Crystalline Solids, 2004, 349: 10-15.

[19] STANTON K, HILL R. The role of fluorine in the devitrification of SiO2·Al2O3·P2O5·CaO·CaF2 glasses[J]. Journal of Materials Science, 2000, 35(8): 1911-1916.

[20] CALVER A, HILL R G, STAMBOULIS A. Influence of fluorine content on the crystallization behavior of apatite-wollastonite glass-ceramics[J]. Journal of Materials Science, 2004, 39(7): 2601-2603.

[21] 刘伟媛.光纤拉丝炉内部气体流场研究[D].苏州: 苏州大学, 2013.

    LIU Wei-yuan. Study on inner flow field of optical fiber drawing furnace[D]. Suzhou: Soochow University, 2013.

[22] 扈性纯.光纤拉丝工艺张力研究[J]. 硅酸盐学报, 1998, 26(3): 359-364.

    HU Xing-chun. Study on tension of fiber-optic wire drawing process[J]. Journal of the Chinese Ceramic Society, 1998, 26(3): 359-364.

[23] BOIZOT B, AGNELLO S, REYNARD B, et al. Raman spectroscopy study of β-irradiated silica glass[J]. Journal of Non-Crystalline Solids, 2003, 325(1-3): 22-28.

折胜飞, 刘波, 常畅, 许彦涛, 肖旭升, 高菘, 张岩, 李艺昭, 侯超奇, 郭海涛. 基于下陷内包层设计的大芯径掺氟光纤表征及性能[J]. 光子学报, 2019, 48(11): 1148013. SHE Sheng-fei, LIU Bo, CHANG Chang, XU Yan-tao, XIAO Xu-sheng, GAO Song, ZHANG Yan, LI Yi-zhao, HOU Chao-qi, GUO Hai-tao. Characterization and Properties of Large-core Fluorine-doped Fibers Based on Depressed Inner Cladding Design[J]. ACTA PHOTONICA SINICA, 2019, 48(11): 1148013.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!