红外与毫米波学报, 2016, 35 (3): 377, 网络出版: 2016-07-26   

非球形冰晶在94/220 GHz毫米波的散射特性模拟计算

Simulation of scattering characteristics of non-spherical ice crystals with 94/220 GHz millimeter-wavelength
作者单位
1 山东省气象局大气探测技术保障中心,山东 济南250031
2 国家卫星气象中心,北京100081
摘要
针对94/220 GHz双频雷达的数据处理,分析了不同形状冰晶对这两个波段的单散射特性及衰减特性,探讨了单形状冰云及具体冰云模型的回波特性,结果表明: 1)当冰晶较大时,冰晶的后向散射及衰减对冰晶形状较敏感,相同最大尺度下,六角形冰晶后向散射及衰减最大、子弹花次之、雪花最小;2)单形状冰晶云的雷达反射率因子对冰晶形状、冰水含量、滴谱的中值尺度较敏感,同样滴谱条件下,220 GHz的衰减系数约是94 GHz的5~25倍;3)具体冰云模型的雷达反射率因子随粒子浓度、冰水含量、中值尺度增加而增加,对粒子谱的形状参数敏感性较低.
Abstract
To process the data from 94/220 GHz dual-band radar, the single scattering and attenuation characteristics of ice crystals with different shapes by the two bands were analyzed. The echo characteristics of ice clouds based on single shape ice crystals or a refined model were discussed. The backscatter and attenuation of the larger particles are sensitive to the particle shape. They are the largest for hexagonal ice crystals, greater for bullet, and the least for snow. The radar reflectivity factor (Ze) of ice clouds based on single shape ice crystals are sensitive to the shapes of ice crystals, ice water content and the median dimension of particles size distribution (PSD). The attenuation coefficient of 220 GHz wave is about 5-25 times than that of 94 GHz at the same PSD. Ze of the refined model increases with the particle concentration, ice water content, and median dimension. It is less sensitive to the shape parameters of the PSD.
参考文献

[1] Kropfli R A, Coauthors. Cloud physics studies with 8mm wavelength radar[J]. Atmos Res, 1995, 35: 299313.

[2] Stokes G M , Schwartz S E. The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed[J]. Bull Am Meteorol Soc, 1994, 75(7): 12011221.

[3] Lhermitte R M. 94 GHz doppler radar for cloud observations[J]. Journal of Atmospheric and Oceanic Technology, 1987, 4: 3648.

[4] Hogan R J, Illingworth A J, Sauvageot H. Measuring crystal size in cirrus using 35 and 94 GHz radars[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(1): 2737.

[5] Danne. Relationships between doppler spectral moments within large-scale cirro-and altostratus cloud fields observed by a ground-based 95 GHz cloud radar[J]. Journal of Applied Meteorology, 1999, 38: 175189.

[6] Zhong L Z, Liu L P , Ge R S. Characteristics about the millimeter-wavelength radar and its status and prospect in and abroad. Advances in Earth Science(仲凌志, 刘黎平, 葛润生. 2009. 毫米波测云雷达的特点及其研究现状与展望. 地球科学进展), 2009, 24(4): 383391.

[7] Wu J X, Wei M, Hang X, et al. The first observed cloud echoes and microphysical parameter retrievals by China’s 94-GHz cloud radar[J]. Journal of Meteorological Research, 2014, 28(3): 430443.

[8] James. Remote sensing of clouds and fog with a 1.4 mm radar[J], Jounal of atmospheric and oceanic technology, 1989, 6: 1090-1097.

[9] An Dawei, Jian Shang, Qiong Wu, et al. Remote sensing of clouds and evaluation with a 220GHz radar[C] , Proc. SPIE 9259, Remote Sensing of the Atmosphere, Clouds, and Precipitation, 2014: 9259.

[10] Battaglia A, Westbrook C D, Kneifel S, et al. G band atmospheric radars: new frontiers in cloud physics Atmos[J]. Meas. Tech, 2014, 7: 15271546.

[11] Matrosov S Y , Heymsfield A J. Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements[J]. J Geophys Res, 2008: 113: D8.

[12] Hogan R, Tian L, Brown P C, et al. Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation[J]. J Appl Met Climatol, 2012, 51(3): 655671.

[13] Leinonen J, Kneifel S, Moisseev D, et al. Evidence of nonspherical behavior in millimeter-wavelength radar observations of snowfall[J]. J Geophys Res, 2012, 117(10): D18205.

[14] Wu J X, Wei M, Zhou J. 2013. Relationship between extinction coefficient and radar reflectivity factor of non-spherical ice crystals[J], Journal of Remote Sensing, 17(6): 13771394.

[15] Kim M J, Weinman J A , Sun W. Geoscience and remote sensing symposium[C]. IGARSS '04 Proceedings, IEEE International, 2004, 5: 3555 3558.

[16] Heymsfield, A J, Miloshevich L M. , Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles[J]. J. Atmos. Sci, 2003, 60(7): 936956.

[17] Zhang P C, Du B Y , Dai T P. Radar Meteorology. Beijing: China Meteorological Press(张培昌,戴铁丕,杜秉玉. 雷达气象学[M].北京:气象出版社), 2002: 1084.

[18] Mtzler C. Microwave Dielectric Properties of Ice, I: Thermal Microwave Radiation-Applications for Remote Sensing[M]. Stevenage: Institution of Engineering and Technology, 2006: 455462.

[19] Lhermitte R M. Centimeter&millmeter Wavelength Radars in Meteorology[M]. Lhermitte Publications, 2002: 187496.

[20] Draine B T ,Flatau P J. Discrete-dipole approximation for scatter-ing calculations. Optical Society of America, 1994, 11: 14911499.

[21] Liu G S. A database of microware single-scattering Properties for nonspherical ice crystals. Bulletin of the American Meteorological Society, 2008, 89(10): 15631570.

[22] Nowell H, Liu G, Honeyager R. Modeling the microwave single-scattering properties of aggregate snowflakes[J], J Geophys Res Atmos, 2013, 118: 78737885.

[23] Baum B A, Heymsfield A J, Yang P, et al. Bulk scattering properties for the remote sensing of ice clouds, Part I: Microphysical data and models[J]. Journal of Applied Meteorology, 2005, 44(12): 18851895.

[24] Fu, Q. An accurate parameterization of the solar radiative properties of cirrus clouds for climate models[J]. Journal of climate, 1996, 9(9): 20582082.

吴举秀, 窦芳丽, 安大伟, 陈庆亮, 黄磊, 涂爱琴. 非球形冰晶在94/220 GHz毫米波的散射特性模拟计算[J]. 红外与毫米波学报, 2016, 35(3): 377. WU Ju-Xiu, DOU Fang-Li, AN Da-Wei, CHEN Qing-Liang, HUANG Lei, TU Ai-Qin. Simulation of scattering characteristics of non-spherical ice crystals with 94/220 GHz millimeter-wavelength[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 377.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!