光电工程, 2013, 40 (5): 97, 网络出版: 2013-05-24   

基于GPU的超声弹性成像并行实现研究

Investigation of GPU-based Ultrasound Elastography
彭博 1,2,*谌勇 1刘东权 1
作者单位
1 四川大学计算机学院, 成都 610065
2 西南石油大学计算机科学学院, 成都 610500
摘要
为了提高超声弹性成像计算速度 , 提出使用 GPU硬件加速基于互相关技术和相位零估计的弹性成像技术。先描述这两种弹性成像技术的实现细节及特点 , 然后分析这两种技术的计算密集操作部分的并行化计算可能性 , 最后通过 GPU程序开发工具 ArrayFire实现了基于 GPU的互相关和相位零估计的超声弹性成像技术。通过模拟和扫描仿真人体组织的弹性成像体模获得的压缩前后数据帧对基于 GPU的超声弹性成像方法进行测试与验证。实验结果表明, 基于GPU的方法可以大幅提高弹性图计算速度 , 在处理单帧弹性图条件下 , 与基于互相关方法比较 , 加速比达到 42×, 而基于相位零估计的方法在提高数据吞吐量的情况下加速比可达到 65×。
Abstract
In order to improve the calculation speed of ultrasound elastograms, two common ultrasound elastography methods based on Graphics Processing Unit (GPU) were investigated. After giving an introduction about the two common methods, the GPU-based approaches to rapidly estimate tissue strain was proposed. The two GPU-based approaches were tested in simulation signals and real signals by scanning a tissue-mimicking phantom respectively.Experimental results show that the GPU-based Normalized Cross Correlation (NCC) implementation is about 42 times faster than that based on CPU platform with the same elasticity image quality. At the same time, the GPU-based Phase Zero Estimation (PZE) approach is about 65 times faster than that corresponding implementation on CPU by increasing data throughput.
参考文献

[1] Lindop J E, Treece G M, Gee A H, et al. 3D elastography using freehand ultrasound [J]. Ultrasound in Medicine & Biology (S0301-5629), 2006, 32(4): 529-545.

[2] Shiina T, Nitta N, Ueno E, et al. Real time tissue elasticity imaging using combined autocorrelation method [J]. Journal of Medical Ultrasonics(S1346-4523), 1999, 26(2): 57–66.

[3] Konofagou E E, Varghese T, Ophir J, et al. Power spectral strain estimators in elastography [J]. Ultrasound in Medicine & Biology(S0301-5629), 1999, 25(7): 1115-1129.

[4] Rivaz H, Boctor E, Foroughi P, et al. Ultrasound elastography: A dynamic programming approach [J]. IEEE Transactions on Medical Imaging(S0278-0062), 2008, 27(10): 1373-1377.

[5] Zahiri-Azar R, Salcudean S E. Motion estimation in ultrasound images using time domain cross correlation with prior estimates [J]. IEEE Transactions on Biomedical Engineering(S0018-9294), 2006, 53(10): 1990-2000.

[6] Hoyt K, Forsberg F, Ophir J. Comparison of shift estimation strategies in spectral elastography [J]. Ultrasonics(S0041-624X), 2006, 44(1): 99–108.

[7] 蒋霓, 段凌凤, 杨万能, 等. 基于并行处理技术的谷物粒型快速测量算法 [J].光电工程, 2012, 39(3): 66-71.

    JIANG Ni, DUAN Lingfeng, YANG Wanneng, et al. Fast Grain Shape Determination Algorithm Based on Parallel Processing [J]. Opto-Electronic Engineering, 2012, 39(3): 66-71.

[8] 甘新标, 沈立, 王志英. 基于 CUDA的并行全搜索运动估计算法 [J].计算机辅助设计与图形学学报, 2010, 22(3): 457-460.

    GAN Xinbiao, SHEN Li, WANG Zhiying. Parallelizing Full Search Algorithm for Motion Estimation Using CUDA [J]. Journal of Computer-Aided Design & Computer Graphics, 2010, 22(3): 457-460.

[9] Dai YK, Tian J, Dong D, et al. Realtime visualized freehand 3D ultrasound reconstruction based on GPU [J]. IEEE Transactions on Information Technology in Biomedicine (S1089-7771), 2010, 14(6): 1338–1345.

[10] Liu DL, Ebbini E S. Real-time 2-D temperature imaging using ultrasound [J]. IEEE Transactions on Biomedical Engineering(S0018-9294), 2010, 57(1): 12–16.

[11] 夏春兰, 石丹, 刘东权. 基于 CUDA的超声 B模式成像 [J].计算机应用研究, 2011, 28(6): 2011-2015.

    XIA Chunlan, SHI Dan, LIU Dongquan. Ultrasound B-mode imaging based on CUDA [J]. Application Research of Computers, 2011, 28(6): 2011-2015.

[12] 范正娟, 谭朝炜, 刘东权. 基于 CUDA的彩色超声血流成像 [J].计算机应用, 2011, 31(3): 856-859.

    FAN Zhengjuan, TAN Chaowei, LIU Dongquan. Ultrasound color flow imaging based on compute unified device architecture [J]. Journal of Computer Applications, 2011, 31(3): 856-859.

[13] Samant S, Xia J, Muyan-Ozcelik P, et al. High performance computing for deformable image registration: Towards a new paradigm in adaptive radiotherapy [J]. Medical Physics(S0094-2405), 2008, 35(8): 3546–3553.

[14] Jia X, Lou Y, Li R, et al. GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation [J]. Medical Physics(S0094-2405), 2010, 37(4): 1757–1760.

[15] NVIDA Corp. Compute Unified Device Architecture Programming Guide [EB/OL]. http: //docs.nvidia.com/cuda/index.html, 2012-12.

[16] Advanced Micro Devices, Inc. AMD Accelerated Parallel Processing (APP) SDK OpenCL Programming Guide [EB/OL]. http: //developer.amd.com/wordpress/media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide4.pdf, 2012-12.

[17] OpenACC.org. The OpenACC Application Programming Interface [EB/OL]. http: //www.openacc.org/sites/default/files/Open-ACC. 1.0_0.pdf, 2012-12.

[18] AccelerEyes Corp. ArrayFire for GPU Computing [EB/OL]. http: //www.accelereyes.com/products/arrayfire, 2012-12.

[19] Hall T, Zhu Y, Spalding C S. In vivo real-time freehand palpation imaging [J]. Ultrasound in Medicine & Biology (S0301-5629), 2003, 29(3): 427–435.

[20] Luo J, Bai J, He P, et al. Axial strain calculation using a low-pass digital differentiator in ultrasound elastography [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control (S0301-5629), 2004, 51(9): 1119-1127.

[21] JIANG Zhiqiang, LIU Paul, LIU Dongquan. Modified Phase Zero Method for Ultrasound Freehand Strain Imaging [C]// International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, June 11-13, 2009: 1-4.

彭博, 谌勇, 刘东权. 基于GPU的超声弹性成像并行实现研究[J]. 光电工程, 2013, 40(5): 97. PENG Bo, CHEN Yong, LIU Dongquan. Investigation of GPU-based Ultrasound Elastography[J]. Opto-Electronic Engineering, 2013, 40(5): 97.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!