中国激光, 2020, 47 (5): 0500003, 网络出版: 2020-05-12   

超快激光成丝现象研究综述 下载: 3131次特邀综述

Research Progress on Ultrafast Laser Filamentation
作者单位
1南开大学现代光学研究所天津市微尺度光学信息技术科学重点实验室, 天津 300350
引用该论文

刘伟伟, 薛嘉云, 苏强, 陈瑞良. 超快激光成丝现象研究综述[J]. 中国激光, 2020, 47(5): 0500003.

Weiwei Liu, Jiayun Xue, Qiang Su, See Leang Chin. Research Progress on Ultrafast Laser Filamentation[J]. Chinese Journal of Lasers, 2020, 47(5): 0500003.

参考文献

[1] Kasparian J. White-light filaments for atmospheric analysis[J]. Science, 2003, 301(5629): 61-64.

[2] Kandidov V P, Kosareva O G, Golubtsov I S, et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)[J]. Applied Physics B, 2003, 77(2/3): 149-165.

[3] Chin S L, Hosseini S A, Liu W, et al. The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges[J]. Canadian Journal of Physics, 2005, 83(9): 863-905.

[4] Chin S L, Théberge F, Liu W. Filamentation nonlinear optics[J]. Applied Physics B, 2007, 86(3): 477-483.

[5] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2/3/4): 47-189.

[6] Bergé L, Skupin S, Nuter R, et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 2007, 70(10): 1633-1713.

[7] Kasparian J, Wolf J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics Express, 2008, 16(1): 466-193.

[8] Chin S L, Wang T J, Marceau C, et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 2012, 22(1): 1-53.

[9] Hercher M. Laser-induced damage in transparent media[J]. Journal of the Optical Society of America, 1964, 54: 563.

[10] Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letters, 1964, 13(15): 479-482.

[11] Shen Y R. Self-focusing: experimental[J]. Progress in Quantum Electronics, 1975, 4: 1-34.

[12] Marburger J H. Self-focusing: theory[J]. Progress in Quantum Electronics, 1975, 4: 35-110.

[13] Marburrger J, Wagner W. Self-focusing as a pulse sharpening mechanism[J]. IEEE Journal of Quantum Electronics, 1967, 3(10): 415-416.

[14] Lugovoǐ V N, Prokhorov A M. Theory of the propagation of high-power laser radiation in a nonlinear medium[J]. Soviet Physics Uspekhi, 1974, 16(5): 658-679.

[15] Loy M M T, Shen Y R. Small-scale filaments in liquids and tracks of moving foci[J]. Physical Review Letters, 1969, 22(19): 994-997.

[16] Loy M M T, Shen Y R. Experimental study of small-scale filaments of light in liquids[J]. Physical Review Letters, 1970, 25(19): 1333-1336.

[17] Chin S L, Brodeur A, Petit S, et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)[J]. Journal of Nonlinear Optical Physics & Materials, 1999, 8(1): 121-146.

[18] Yablonovitch E, Bloembergen N. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media[J]. Physical Review Letters, 1972, 29(14): 907-910.

[19] Bloembergen N. The influence of electron plasma formation on superbroadening in light filaments[J]. Optics Communications, 1973, 8(4): 285-288.

[20] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

[21] Liu W, Chin S L. Direct measurement of the critical power of femtosecond Ti∶sapphire laser pulse in air[J]. Optics Express, 2005, 13(15): 5750-5755.

[22] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73-75.

[23] Yang H, Zhang J, Li Y J, et al. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air[J]. Physical Review E, 2002, 66: 016406.

[24] Brodeur A, Chien C Y, Ilkov F A, et al. Moving focus in the propagation of ultrashort laser pulses in air[J]. Optics Letters, 1997, 22(5): 304-306.

[25] Liu W W. Intensity clamping during femtosecond laser filamentation[J]. Chinese Journal of Physics, 2014, 52(1): 465-489.

[26] Proulx A, Talebpour A, Petit S, et al. Fast pulsed electric field created from the self-generated filament of a femtosecond Ti∶Sapphire laser pulse in air[J]. Optics Communications, 2000, 174: 305-309.

[27] Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses[J]. Applied Physics B, 1999, 68(4): 753-756.

[28] Wang L F, Lu X, Teng H, et al. Carrier-envelope phase-dependent electronic conductivity in an air filament driven by few-cycle laser pulses[J]. Physical Review A, 2016, 94: 013827.

[29] Rodriguez M, Bourayou R, Méjean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 2004, 69(3): 036607.

[30] Dicaire I, Jukna V, Praz C, et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 2016, 10(3): 481-493.

[31] Hauri C P, Kornelis W, Helbing F W, et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Applied Physics B, 2004, 79(6): 673-677.

[32] Chen X W, Leng Y X, Liu J, et al. Pulse self-compression in normally dispersive bulk media[J]. Optics Communications, 2006, 259(1): 331-335.

[33] Théberge F, Aközbek N, Liu W W, et al. Tunable ultrashort laser pulses generated through filamentation in gases[J]. Physical Review Letters, 2006, 97(2): 023904.

[34] 徐强, 苏强, 鲁丹, 等. 基于激光成丝的太赫兹时域光谱系统研究综述[J]. 中国激光, 2019, 46(6): 0614010.

    Xu Q, Su Q, Lu D, et al. Review of terahertz time-domain spectroscopy systems based on laser filament[J]. Chinese Journal of Lasers, 2019, 46(6): 0614010.

[35] Gravel J F, Luo Q, Boudreau D, et al. Sensing of halocarbons using femtosecond laser-induced fluorescence[J]. Analytical Chemistry, 2004, 76(16): 4799-4805.

[36] Xu H L, Cheng Y, Chin S L, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 2015, 9(3): 275-293.

[37] Chin S L, Xu H L, Luo Q, et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 2009, 95(1): 1-12.

[38] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 2010, 11(1): 32-53.

[39] Ju J J, Liu J S, Wang C, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 2012, 37(7): 1214-1216.

[40] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics, 2018, 81(2): 026001.

[41] Sudrie L, Franco M, Prade B, et al. Study of damage in fused silica induced by ultra-short IR laser pulses[J]. Optics Communications, 2001, 191: 333-339.

[42] Zhan X P, Xu H L, Li C H, et al. Remote and rapid micromachining of broadband low-reflectivity black silicon surfaces by femtosecond laser filaments[J]. Optics Letters, 2017, 42(3): 510-513.

[43] 陈平, 王云飞, 戴子杰, 等. 基于飞秒激光成丝的大幅面激光打标方法[J]. 中国激光, 2019, 46(5): 0508019.

    Chen P, Wang Y F, Dai Z J, et al. Large-area laser marking methods based on femtosecond laser filamentation[J]. Chinese Journal of Lasers, 2019, 46(5): 0508019.

[44] Lange H R, Chiron A, Ripoche J F, et al. High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses[J]. Physical Review Letters, 1998, 81(8): 1611-1613.

[45] Chin S L, Aközbek N, Proulx A, et al. Transverse ring formation of a focused femtosecond laser pulse propagating in air[J]. Optics Communications, 2001, 188: 181-186.

[46] Méchain G, Couairon A, André Y B, et al. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization[J]. Applied Physics B, 2004, 79(3): 379-382.

[47] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 2000, 71(6): 877-879.

[48] Liu W, Théberge F, Arévalo E, et al. Experiment and simulations on the energy reservoir effect in femtosecond light filaments[J]. Optics Letters, 2005, 30(19): 2602-2604.

[49] Xu S Q, Sun X D, Zeng B, et al. Simple method of measuring laser peak intensity inside femtosecond laser filament in air[J]. Optics Express, 2012, 20(1): 299-307.

[50] Liu W, Chin S, Kosareva O, et al. Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol)[J]. Optics Communications, 2003, 225(1/2/3): 193-209.

[51] Qi P F, Lin L, Su Q, et al. In-situ visualization of multiple filament competition dynamic during nonlinear propagation of femtosecond laser[J]. Scientific Reports, 2017, 7: 10384.

[52] Liu J S, Schroeder H, Chin S L, et al. Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation[J]. Optics Express, 2005, 13(25): 10248-10259.

[53] Brodeur A, Chin S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media[J]. Journal of the Optical Society of America B, 1999, 16(4): 637-650.

[54] Liu W, Gravel J F, Théberge F, et al. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air[J]. Applied Physics B, 2005, 80(7): 857-860.

[55] Iwasaki A, Aközbek N, Ferland B, et al. A LIDAR technique to measure the filament length generated by a high-peak power femtosecond laser pulse in air[J]. Applied Physics B, 2003, 76(3): 231-236.

[56] Hosseini S A, Yu J, Luo Q, et al. Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study[J]. Applied Physics B, 2004, 79(4): 519-523.

[57] Sun X D, Xu S Q, Zhao J Y, et al. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air[J]. Optics Express, 2012, 20(4): 4790-4795.

[58] Odhner J, Levis R J. Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air[J]. Optics Letters, 2012, 37(10): 1775-1777.

[59] Liu Y, Wen Q, Xu S, et al. Pulse characterization during femtosecond laser filamentation in air by two-photon fluorescence measurement[J]. Applied Physics B, 2011, 105(4): 825-831.

[60] Sun Q, Jiang H B, Liu Y, et al. Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica[J]. Optics Letters, 2005, 30(3): 320-322.

[61] La Fontaine B, Vidal F, Jiang Z, et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air[J]. Physics of Plasmas, 1999, 6(5): 1615-1621.

[62] Théberge F, Liu W W, Simard P T, et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing[J]. Physical Review E, 2006, 74(3): 036406.

[63] Yu J, Mondelain D, Kasparian J, et al. Sonographic probing of laser filaments in air[J]. Applied Optics, 2003, 42(36): 7117-7120.

[64] Bernhardt J, Liu W, Théberge F, et al. Spectroscopic analysis of femtosecond laser plasma filament in air[J]. Optics Communications, 2008, 281(5): 1268-1274.

[65] Wang T J, Ju J J, Wei Y X, et al. Longitudinally resolved measurement of plasma density along femtosecond laser filament via terahertz spectroscopy[J]. Applied Physics Letters, 2014, 105(5): 051101.

[66] Ripoche J F, Grillon G, Prade B, et al. Determination of the time dependence of n2 in air[J]. Optics Communications, 1997, 135(4/5/6): 310-314.

[67] Kosareva O G, Kandidov V P, Brodeur A, et al. From filamentation in condensed media to filamentation in gases[J]. Journal of Nonlinear Optical Physics & Materials, 1997, 6(4): 485-494.

[68] Talebpour A, Yang J, Chin S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti∶sapphire laser pulse[J]. Optics Communications, 1999, 163(1/2/3): 29-32.

[69] Brabec T, Krausz F. Nonlinear optical pulse propagation in the single-cycle regime[J]. Physical Review Letters, 1997, 78(17): 3282-3285.

[70] Kolesik M, Wright E M, Moloney J V. Dynamic nonlinear X waves for femtosecond pulse propagation in water[J]. Physical Review Letters, 2004, 92(25): 253901.

[71] Kolesik M, Moloney J V, Mlejnek M. Unidirectional optical pulse propagation equation[J]. Physical Review Letters, 2002, 89(28): 283902.

[72] Kolesik M, Moloney J V. Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations[J]. Physical Review E, 2004, 70(3): 036604.

[73] Liu W W, Chin S L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation[J]. Physical Review A, 2007, 76: 013826.

[74] Moll K D, Gaeta A L, Fibich G. Self-similar optical wave collapse: observation of the Townes profile[J]. Physical Review Letters, 2003, 90(20): 203902.

[75] Aközbek N, Iwasaki A, Becker A, et al. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses[J]. Physical Review Letters, 2002, 89(14): 143901.

[76] Lange H R, Grillon G, Ripoche J F, et al. Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?[J]. Optics Letters, 1998, 23(2): 120-122.

[77] Liu W, Petit S, Becker A, et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics Communications, 2002, 202(1/2/3): 189-197.

[78] Daigle J F, Jaroń-Becker A, Hosseini S, et al. Intensity clamping measurement of laser filaments in air at 400 and 800 nm[J]. Physical Review A, 2010, 82(2): 023405.

[79] 张旋, 王铁军, 郭豪, 等. 脉宽依赖的飞秒激光成丝钳制光强的研究[J]. 中国激光, 2019, 46(9): 0901005.

    Zhang X, Wang T J, Guo H, et al. Pulse-duration-dependent clamping intensity in femtosecond laser filament[J]. Chinese Journal of Lasers, 2019, 46(9): 0901005.

[80] Talebpour A, Petit S, Chin S. Re-focusing during the propagation of a focused femtosecond Ti∶sapphire laser pulse in air[J]. Optics Communications, 1999, 171(4/5/6): 285-290.

[81] Wu Z X, Jiang H B, Luo L, et al. Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica[J]. Optics Letters, 2002, 27(6): 448-450.

[82] Hosseini S A, Luo Q, Ferland B, et al. Competition of multiple filaments during the propagation of intense femtosecond laser pulses[J]. Physical Review A, 2004, 70(3): 033802.

[83] Liu W, Hosseini S A, Luo Q, et al. Experimental observation and simulations of the self-action of white light laser pulse propagating in air[J]. New Journal of Physics, 2004, 6: 6.

[84] Courvoisier F, Boutou V, Kasparian J, et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 2003, 83(2): 213-215.

[85] Skupin S, Bergé L, Peschel U, et al. Interaction of femtosecond light filaments with obscurants in aerosols[J]. Physical Review Letters, 2004, 93(2): 023901.

[86] Dubietis A, Kucinskas E, Tamosauskas G, et al. Self-reconstruction of light filaments[J]. Optics Letters, 2004, 29(24): 2893-2895.

[87] 李子熙, 龚成, 华林强, 等. 强飞秒激光在氟化钙晶体中产生的超连续谱[J]. 中国激光, 2019, 46(5): 0508021.

    Li Z X, Gong C, Hua L Q, et al. Supercontinuum generation in calcium fluoride crystals using high-intensity femtosecond laser[J]. Chinese Journal of Lasers, 2019, 46(5): 0508021.

[88] Boyd RW. Nonlinear optics[M]. Boston: Academic Press, 2003: 67- 371.

[89] Agrawal GP. Nonlinear fiber optics[M]. New York: Academic Press, 1989: 20- 78.

[90] Liu WW. Ultrashort pulse filamentation in transparent optical media[D]. Quebec: Laval University, 2006: 24- 27.

[91] Brodeur A, Chin S L. Band-gap dependence of the ultrafast white-light continuum[J]. Physical Review Letters, 1998, 80(20): 4406-4409.

[92] Xu S Q, Zhang Y Z, Liu W W, et al. Experimental confirmation of high-stability of fluorescence in a femtosecond laser filament in air[J]. Optics Communications, 2009, 282(24): 4800-4804.

[93] Béjot P, Kasparian J, Henin S, et al. Higher-order Kerr terms allow ionization-free filamentation in gases[J]. Physical Review Letters, 2010, 104(10): 103903.

[94] Kosareva O, Daigle J F, Panov N, et al. Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?[J]. Optics Letters, 2011, 36(7): 1035-1037.

[95] Volkova E A, Popov A M, Tikhonova O V. Polarisation response of a gas medium in the field of a high-intensity ultrashort laser pulse: high order Kerr nonlinearities or plasma electron component?[J]. Quantum Electronics, 2012, 42(8): 680-686.

[96] Qi P F, Zhang L, Lin L, et al. Critical power for self-focusing of optical beam in absorbing media[J]. Laser Physics, 2018, 28(4): 045407.

[97] Vidal F, Johnston T W. Electromagnetic beam breakup: multiple filaments, single beam equilibria, and radiation[J]. Physical Review Letters, 1996, 77(7): 1282-1285.

[98] Chin S L, Talebpour A, Yang J, et al. Filamentation of femtosecond laser pulses in turbulent air[J]. Applied Physics B, 2002, 74(1): 67-76.

[99] Chin S L, Petit S, Liu W, et al. Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air[J]. Optics Communications, 2002, 210: 329-341.

[100] Chin SL, Liu WW, ThebergeF, et al. Some fundamental concepts of femtosecond laser filamentation[M] ∥Yamanouchi K, Chin S L, Agostini P, et al. Progress in ultrafast intense laser science III. Berlin, Heidelberg: Springer, 2008, 89: 243- 264.

[101] Carrasco S, Polyakov S, Kim H, et al. Observation of multiple soliton generation mediated by amplification of asymmetries[J]. Physical Review E, 2003, 67(4): 046616.

[102] Gao H, Sun X D, Zeng B, et al. Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol[J]. Journal of Optics, 2012, 14(6): 065203.

[103] Xi T T, Lu X, Zhang J. Interaction of light filaments generated by femtosecond laser pulses in air[J]. Physical Review Letters, 2006, 96(2): 025003.

[104] Tzortzakis S, Bergé L, Couairon A, et al. Breakup and fusion of self-guided femtosecond light pulses in air[J]. Physical Review Letters, 2001, 86(24): 5470-5473.

[105] Cai H, Wu J, Lu P F, et al. Attraction and repulsion of parallel femtosecond filaments in air[J]. Physical Review A, 2009, 80(5): 051802.

[106] Mlejnek M, Kolesik M, Moloney J V, et al. Optically turbulent femtosecond light guide in air[J]. Physical Review Letters, 1999, 83(15): 2938-2941.

[107] Gao H, Chu W, Yu G L, et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics Express, 2013, 21(4): 4612-4622.

[108] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B, 2003, 76(3): 337-340.

[109] Dogariu A, Michael J B, Scully M O, et al. High-gain backward lasing in air[J]. Science, 2011, 331(6016): 442-445.

[110] Yao J P, Chu W, Liu Z X, et al. An anatomy of strong-field ionization-induced air lasing[J]. Applied Physics B, 2018, 124(5): 73.

[111] Yao J P, Zeng B, Xu H L, et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 2011, 84(5): 051802.

[112] Luo Q, Xu H L, Hosseini S A, et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy[J]. Applied Physics B, 2006, 82(1): 105-109.

[113] Liu W, Théberge F, Daigle J F, et al. An efficient control of ultrashort laser filament location in air for the purpose of remote sensing[J]. Applied Physics B, 2006, 85(1): 55-58.

[114] Théberge F, Luo Q, Liu W, et al. Long-range third-harmonic generation in air using ultrashort intense laser pulses[J]. Applied Physics Letters, 2005, 87(8): 081108.

[115] Xu S, Bernhardt J, Sharifi M, et al. Intensity clamping during laser filamentation by TW level femtosecond laser in air and argon[J]. Laser Physics, 2012, 22(1): 195-202.

[116] Liu W W, Luo Q, Chin S L, et al. Competition between multiphoton/tunnel ionization and filamentation induced by powerful femtosecond laser pulses in air[J]. Chinese Optics Letters, 2003, 1(1): 56-59.

[117] Liu W, Kosareva O, Golubtsov I S, et al. Femtosecond laser pulse filamentation versus optical breakdown in H2O[J]. Applied Physics B, 2003, 76(3): 215-229.

[118] Nguyen N T, Saliminia A, Liu W, et al. Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses[J]. Optics Letters, 2003, 28(17): 1591-1593.

[119] Qi P F, Su Q, Lin L, et al. Bubble dynamics driven by a few successive femtosecond laser pulses in methanol under 1 kHz[J]. Journal of the Optical Society of America B, 2018, 35(11): 2727-2733.

[120] Bergé L, Rasmussen J J, Kuznetsov E A, et al. Self-focusing of chirped optical pulses in media with normal dispersion[J]. Journal of the Optical Society of America B, 1996, 13(9): 1879-1891.

[121] Nuter R, Skupin S, Bergé L. Chirp-induced dynamics of femtosecond filaments in air[J]. Optics Letters, 2005, 30(8): 917-919.

[122] Kartazaev V, Alfano R R. Supercontinuum generated in calcite with chirped femtosecond pulses[J]. Optics Letters, 2007, 32(22): 3293-3295.

[123] Shumakova V, Alisauskas S, Malevich P, et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR[J]. Optics Letters, 2019, 44(9): 2173-2176.

[124] Wang W M, Sheng Z M, Wu H C, et al. Strong terahertz pulse generation by chirped laser pulses in tenuous gases[J]. Optics Express, 2008, 16(21): 16999-17006.

[125] Zhang Z, Panov N, Andreeva V, et al. Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air[J]. Applied Physics Letters, 2018, 113(24): 241103.

[126] Nguyen A. González de Alaiza Martínez P, Thiele I, et al. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses[J]. New Journal of Physics, 2018, 20(3): 033026.

[127] Roskos H G, Thomson M D, Kreß M, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications[J]. Laser & Photonics Review, 2007, 1(4): 349-368.

[128] Andreeva V A, Kosareva O G, Panov N A, et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 2016, 116(6): 063902.

[129] Zeng B, Chu W, Gao H, et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 2011, 84(6): 063819.

[130] Zeng B, Wang T J, Hosseini S, et al. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses[J]. Journal of the Optical Society of America B, 2012, 29(12): 3226-3230.

[131] Froula D H, Turnbull D, Davies A S, et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 2018, 12(5): 262-265.

[132] Luo Q, Hosseini S A, Liu W, et al. Effect of beam diameter on the propagation of intense femtosecond laser pulses[J]. Applied Physics B, 2005, 80(1): 35-38.

[133] Liu W, Luo Q, Théberge F, et al. The influence of divergence on the filament length during the propagation of intense ultra-short laser pulses[J]. Applied Physics B, 2006, 82(3): 373-376.

[134] Gao H, Liu W W, Chin S L. Post-filamentation multiple light channel formation in air[J]. Laser Physics, 2014, 24(5): 055301.

[135] Fu Y X, Xiong H, Xu H, et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 2009, 34(23): 3752-3754.

[136] Walter D, Bürsing H, Ebert R. Emission of spiral patterns from filaments in the infrared[J]. Optics Express, 2010, 18(23): 24258-24263.

[137] Lü J Q, Li P P, Wang D, et al. Extending optical filaments with phase-nested laser beams[J]. Photonics Research, 2018, 6(12): 1130-1136.

[138] Hong Z F, Zhang Q B, Ali Rezvani S, et al. Extending plasma channel of filamentation with a multi-focal-length beam[J]. Optics Express, 2016, 24(4): 4029-4041.

[139] Sun X D, Zeng T, Gao H, et al. Power dependent filamentation of a femtosecond laser pulse in air by focusing with an axicon[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48(9): 094004.

[140] Scheller M, Mills M S, Miri M A, et al. Externally refuelled optical filaments[J]. Nature Photonics, 2014, 8(4): 297-301.

[141] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729-1731.

[142] Kosareva O G, Nguyen T, Panov N A, et al. Array of femtosecond plasma channels in fused silica[J]. Optics Communications, 2006, 267(2): 511-523.

[143] Châteauneuf M, Payeur S, Dubois J, et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 2008, 92(9): 091104.

[144] Alshershby M, Hao Z Q, Lin J Q. Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept[J]. Journal of Physics D: Applied Physics, 2012, 45(26): 265401.

[145] Zhao J Y, Guo L J, Chu W, et al. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate[J]. Optics Letters, 2015, 40(16): 3838-3841.

[146] 高慧, 赵佳宇, 刘伟伟. 超快激光成丝现象的多丝控制[J]. 光学精密工程, 2013, 21(3): 598-607.

    Gao H, Zhao J Y, Liu W W. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 2013, 21(3): 598-607.

[147] Hao Z, Zhang J, Li Y, et al. Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses[J]. Applied Physics B, 2005, 80(4/5): 627-630.

[148] Chu W, Zeng B, Li Z T, et al. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system[J]. Applied Physics B, 2017, 123(6): 173.

[149] Yang X, Wu J, Peng Y, et al. Plasma waveguide array induced by filament interaction[J]. Optics Letters, 2009, 34(24): 3806-3808.

[150] Liu J, Li W X, Pan H F, et al. Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air[J]. Applied Physics Letters, 2011, 99(15): 151105.

[151] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 2000, 25(16): 1210-1212.

[152] Fuji T K, Horio T, Suzuki T. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas[J]. Optics Letters, 2007, 32(17): 2481-2483.

[153] Zeng T, He J P, Kobayashi T, et al. Mechanism study of 2-D laser array generation in a YAG crystal plate[J]. Optics Express, 2015, 23(15): 19092-19097.

[154] Yang J, Zeng T, Lin L, et al. Beam wandering of femtosecond laser filament in air[J]. Optics Express, 2015, 23(20): 25628-25634.

[155] Panov N A, Shipilo D E, Saletsky A M, et al. Nonlinear transparency window for ultraintense femtosecond laser pulses in the atmosphere[J]. Physical Review A, 2019, 100(2): 023832.

[156] Xu H L, Lötstedt E, Iwasaki A, et al. Sub-10-fs population inversion in N 2+ in air lasing through multiple state coupling[J]. Nature Communications, 2015, 6: 8347-8347.

[157] Malevich P N, Maurer R, Kartashov D, et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament[J]. Optics Letters, 2015, 40(11): 2469-2472.

[158] Peñano J, Sprangle P, Hafizi B, et al. Remote lasing in air by recombination and electron impact excitation of molecular nitrogen[J]. Journal of Applied Physics, 2012, 111(3): 033105.

[159] Point G, Liu Y, Brelet Y, et al. Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser[J]. Optics Letters, 2014, 39(7): 1725-1728.

[160] Matthews M, Morales F, Patas A, et al. Amplification of intense light fields by nearly free electrons[J]. Nature Physics, 2018, 14(7): 695-700.

[161] Li H L, Hou M Y, Zang H W, et al. Significant enhancement of N 2+ lasing by polarization-modulated ultrashort laser pulses[J]. Physical Review Letters, 2019, 122: 013202.

[162] Su Q, Sun L, Chu C Y, et al. Effect of molecular orbital angular momentum on the spatial distribution of fluorescence during femtosecond laser filamentation in air[J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 730-734.

[163] Yuan S, Wang T J, Teranishi Y, et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 2013, 102(22): 224102.

[164] Chu W, Li H L, Ni J L, et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis[J]. Applied Physics Letters, 2014, 104(9): 091106.

[165] Hosseini S, Azarm A, Daigle J F, et al. Filament-induced amplified spontaneous emission in air-hydrocarbons gas mixture[J]. Optics Communications, 2014, 316: 61-66.

[166] Rohwetter P, Kasparian J, Stelmaszczyk K, et al. Laser-induced water condensation in air[J]. Nature Photonics, 2010, 4(7): 451-456.

[167] 鞠晶晶, 刘建胜, 孙海轶, 等. 飞秒激光人工影响天气的物理机理及研究进展[J]. 中国激光, 2019, 46(5): 0508004.

    Ju J J, Liu J S, Sun H Y, et al. Physical mechanism and research progress of femtosecond laser based artificial atmospheric modulation[J]. Chinese Journal of Lasers, 2019, 46(5): 0508004.

[168] Xu H L, Liu W, Chin S L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials[J]. Optics Letters, 2006, 31(10): 1540-1542.

[169] Liu W, Xu H L, Méjean G, et al. Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(1): 76-81.

[170] Hartig K C, Ghebregziabher I, Jovanovic I. Standoff detection of uranium and its isotopes by femtosecond filament laser ablation molecular isotopic spectrometry[J]. Scientific Reports, 2017, 7: 43852-43852.

[171] Daigle J F, Méjean G, Liu W, et al. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy[J]. Applied Physics B, 2007, 87(4): 749-754.

[172] Oh T I, Yoo Y J, You Y S, et al. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling[J]. Applied Physics Letters, 2014, 105(4): 041103.

[173] Zhang H J, Das S, Zhang J, et al. Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics[J]. Applied Physics Letters, 2012, 101(2): 021105.

[174] Liu J L, Dai J M, Chin S L, et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases[J]. Nature Photonics, 2010, 4(9): 627-631.

[175] 杨晶, 赵佳宇, 郭兰军, 等. 超快激光成丝产生太赫兹波的研究[J]. 红外与激光工程, 2015, 44(3): 996-1007.

    Yang J, Zhao J Y, Guo L J, et al. Study of terahertz radiation from filamentation induced by ultrafast laser pulses[J]. Infrared and Laser Engineering, 2015, 44(3): 996-1007.

[176] Zhang L L, Wang W M, Wu T, et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 2019, 12: 014005.

[177] Zhao J Y, Liu W W, Li S C, et al. Clue to a thorough understanding of terahertz pulse generation by femtosecond laser filamentation[J]. Photonics Research, 2018, 6(4): 296-306.

[178] Zhang Z L, Chen Y P, Cui S, et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments[J]. Nature Photonics, 2018, 12(9): 554-559.

[179] Chin SL. Femtosecond laser filamentation[M]. New York: Springer, 2009, 55: 93- 118.

刘伟伟, 薛嘉云, 苏强, 陈瑞良. 超快激光成丝现象研究综述[J]. 中国激光, 2020, 47(5): 0500003. Weiwei Liu, Jiayun Xue, Qiang Su, See Leang Chin. Research Progress on Ultrafast Laser Filamentation[J]. Chinese Journal of Lasers, 2020, 47(5): 0500003.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!