中国激光, 2020, 47 (5): 0500003, 网络出版: 2020-05-12   

超快激光成丝现象研究综述 下载: 3131次特邀综述

Research Progress on Ultrafast Laser Filamentation
作者单位
1南开大学现代光学研究所天津市微尺度光学信息技术科学重点实验室, 天津 300350
图 & 表

图 1. 实验室观测到的超快激光成丝现象。(a)空气中; (b)石英玻璃中

Fig. 1. Ultrafast laser filamentation formation observed in laboratory. (a) In air; (b) in quartz glass

下载图片 查看原文

图 2. 移动焦点模型示意图

Fig. 2. Schematic of the moving focus model

下载图片 查看原文

图 3. 通过不同实验方法记录的光丝内激光强度空间分布。(a)玻璃板烧蚀深度[44];(b)热敏纸灰度[46]

Fig. 3. Spatial distributions of laser intensity inside the filament recorded by different methods.(a) Ablation depth of glass plate[44]; (b) gray scale of thermal-sensitive paper[46]

下载图片 查看原文

图 4. 典型的光丝诱导氮气分子荧光谱[49]

Fig. 4. Typical fluorescence spectra of nitrogen molecules induced by filament[49]

下载图片 查看原文

图 5. 利用溶解有染料的甲醇溶液中的光丝激发的三光子荧光所观测到的多次自聚焦现象[50]

Fig. 5. Multiple self-focusing phenomena observed by three photon fluorescence excited by filament in the methanol solution with dissolved dye[50]

下载图片 查看原文

图 6. 在溶解有染料的甲醇溶液中,利用光丝激发的三光子荧光观测到的三种典型的多丝动态竞争情况[51]

Fig. 6. Three typical dynamic competition situations of multifilament observed by three photon fluorescence excited by filament in the methanol solution with dissolved dye[51]

下载图片 查看原文

图 7. 光丝长度测量结果。(a)背向氮气荧光的飞行时间测量法[55];(b)侧向超声和微波信号测量法[56]

Fig. 7. Filament length measurement results. (a) Time-of-flight measurment method of backward nitrogen fluorescence[55]; (b) measurement method of the lateral signals of ultrasound and microwave[56]

下载图片 查看原文

图 8. 瞬态频率分辨光快门实验[58]。(a)实验装置示意图;(b)光丝内激光时域包络、光谱和相位的测量结果

Fig. 8. TF-FROG experiment[58]. (a) Schematic of experimental setup; (b) measurement results of the time-domain envelope, spectra, and phase of the laser in filament

下载图片 查看原文

图 9. 原子荧光谱法测量自由电子密度实验[64]。(a)实验装置图;(b)光丝内激发的777 nm附近氧原子荧光谱及其Voigt线型拟合

Fig. 9. Experiment of free electron density measured by atomic fluorescence spectroscopy method[64]. (a) Experimental setup; (b) fluorescence spectrum of oxygen atom excited in filament at 777 nm and its Voigt line fitting

下载图片 查看原文

图 10. 空气成丝过程中激光脉冲时空变化的数值模拟结果[2]

Fig. 10. Numerical simulation results of the spatial and temporalvariation of laser pulse in the process of air filament[2]

下载图片 查看原文

图 11. 光丝内激光角谱分布数值模拟结果[70]

Fig. 11. Numerical simulation result of the laser angular spectrum distribution in filament[70]

下载图片 查看原文

图 12. 成丝过程中衍射与光克尔自聚焦相互作用的数值模拟结果[73](41 cm处的空间模式接近理想高斯型)

Fig. 12. Numerical simulation results of the interaction between diffraction and light Kerr self-focusing during the laser-filament process[73](laser mode at z=41 cm is near ideal Gaussian)

下载图片 查看原文

图 13. 根据自引导模型模拟的空气中光丝内激光强度[22]

Fig. 13. Laser intensity inside air filament based on self-guiding model[22]

下载图片 查看原文

图 14. 在光丝中间插入不同直径光阑的数值模拟结果(当光阑直径大于2 mm时,其对于光丝产生过程的影响不明显,小于2 mm时则会不同程度地截断光丝)

Fig. 14. Numerical simulation results of different diameter apertures inserted in the middle of filament (when the diameter of aperture is larger than 2 mm, it hardly affects the generation of filament; when the diameter is smaller than 2 mm, the filament will be cut off)

下载图片 查看原文

图 15. 在光丝中间插入不同直径挡板时的数值模拟结果(光丝可以“穿过”亚毫米障碍物)

Fig. 15. Numerical simulation results of different diameter obstacles inserted in the middle of filament (the filament can pass through submillimeter obstacle)

下载图片 查看原文

图 16. 在不同介质中,成丝过程所产生的超连续谱[90]

Fig. 16. Supercontinuum spectra induced by the laser filament in different media[90]

下载图片 查看原文

图 17. 光丝内四波混频过程中信号光能量抖动[33]。(a)泵浦钛宝石飞秒激光器输出能量抖动;(b)输入红外信号光能量抖动;(c)低功率下无光丝时空气中四波混频导致的可见光输出能量抖动;(d)高功率下有光丝时空气中四波混频导致的可见光输出能量抖动

Fig. 17. Energy fluctuation of signal light during the four-wave maxing process (FWM) in filament[33]. (a) Output energy fluctuation of the pumped Ti∶sapphire femtosecond lasers; (b) energy fluctuation of input infrared signal light; (c) output energy fluctuation of visible light generated by the FWM below the critical power for self-focusing in air; (d) output energy fluctuation of visible light generated by the FWM above the critical power for self-focu

下载图片 查看原文

图 18. 普通数码相机拍摄的空气里光丝光斑分布[100]。(a)传输距离18 m处的光斑分布(多丝正在形成);(b)传输距离60 m处的光斑分布(多丝辐射的超连续谱发生干涉)

Fig. 18. Light spot distributions in the air captured by ordinary digital camera[100]. (a) Spot distribution at transmission distance of 18 m (multifilaments are forming); (b) spot distribution at transmission distance of 60 m (supercontinuum spectra of multifilament radiation interfere)

下载图片 查看原文

图 19. 双光丝角辐射发生干涉产生新的“热点”[99]。(a)(b)实验结果;(c)(d)数值模拟结果

Fig. 19. New “hot spot” generated by interference of the angular radiation of two filaments[99]. (a)(b) Experimental results; (c)(d) numerical simulation results

下载图片 查看原文

图 20. 利用π相位版产生各自独立的多丝[107]

Fig. 20. Independent multifilaments generated by the π phase plate[107]

下载图片 查看原文

图 21. 荧光和信号激光在光丝中发生受激放大。(a)光丝中氮气分子的背向探测荧光信号受激放大[108];(b)不同波长信号光在光丝中被放大[111]

Fig. 21. Stimulated amplification of fluorescence and signal lasers in filaments. (a) Stimulated amplification of backscatteredfluorescence intensity of N2 in filament[108]; (b) amplification of signal light with different wavelengths in filament[111]

下载图片 查看原文

图 22. 利用光学望远系统调控光丝空间位置的实验装置(图中包括收集背向信号的激光雷达装置)[113]

Fig. 22. Experimental setup for adjusting the spatial position of filament by optical telescope system (the setup includes a lidar device that collects backward fluorescence signal)[113]

下载图片 查看原文

图 23. 光丝与击穿的竞争关系对于利用光丝在玻璃中直写波导的影响(只有区域4所对应的实验参数可以得到质量较高的波导)[118]

Fig. 23. Influence of the competition relationship between optical filament and breakdown on the direct writing waveguide in glass with filament(only the experimental parameters corresponding to region 4 can be used to obtain high quality waveguides)[118]

下载图片 查看原文

图 24. 基于时空聚焦法的光丝光强调控方法[129]。(a)实验装置;(b)光谱数值模拟结果

Fig. 24. Filament intensity control method based on spatiotemporal focusing method[129].(a) Experimental setup; (b) spectral numerical simulation results

下载图片 查看原文

图 25. 基于空间色散和时间啁啾耦合的光丝时空相位调控方法示意图[131]

Fig. 25. Schematic of spatiotemporal phase control of filaments based on spatial dispersion and temporal chirp coupling[131]

下载图片 查看原文

图 26. 利用空间光调制器产生同心环光束来延长光丝长度的实验结果[137]。(a)实验装置图;(b)同心环光束的相位分布;(c)模拟得到的干涉图样;(d)实验得到的干涉图样;(e)~(h)利用同心环光束延长光丝的实验结果

Fig. 26. Experimental results of using spatial light modulator to generate phase-nested beam to extend the length of filaments[137]. (a) Experimental setup; (b) phase distribution of phase-nested beam; (c) simulation result of interference pattern; (d) experiment result of interference pattern; (e)-(h) experiment results of the filament extended by phase-nested beam

下载图片 查看原文

图 27. 纳秒激光辅助脉冲技术[148]。(a)实验装置图;(b)光丝辐射的荧光信号随纳秒激光能量的变化

Fig. 27. Nanosecond laser assisted pulse technology[148]. (a) Experimental setup; (b) curve of fluorescence signal of filament radiation with the energy of the nanosecond laser

下载图片 查看原文

图 28. 利用光丝中的四波混频产生深紫外超快激光[152]。(a)实验装置;(b)输出深紫外超快激光光谱

Fig. 28. Deep ultraviolet ultrafast laser produced by FWM in filaments[152]. (a) Experimental setup; (b) output deep ultraviolet ultrafast laser spectrum

下载图片 查看原文

图 29. 从高度400 km的轨道向地球表面发射TW飞秒激光的数值模拟结果[30]。(a')~(a'?)光束直径与高度的关系;(b)(c)最大光强和等离子体密度与高度的关系

Fig. 29. Theoretical numerical calculation results of the TW femtosecond laser propagation from the orbit at an altitude of 400 km toward earth's surface[30]. (a')-(a'?) Beam diameter as a function of altitude; (b)(c) maximum intensity and plasma density versus altitude

下载图片 查看原文

图 30. 光丝诱导的大气污染源模拟样品的特征指纹谱。(a)三种氟利昂主要成分[35];(b)蛋白固体粉末[168];(c)金属样品[169](插图为光丝激发的贫铀与高浓缩铀590 nm附近荧光谱[170]);(d)盐水气溶胶[171]

Fig. 30. Characteristic fingerprints of simulation sample of air pollution sources induced by filament. (a) Three main components of Freon[35]; (b) solid protein powder[168]; (c) metal sample[169](the inset is the 590 nm fluorescence spectra of depleted and highly enriched uraniums induced by laser filament[170

下载图片 查看原文

图 31. 空气中光丝诱导的现象。(a)人工降雨[166];(b)降雪[39]

Fig. 31. Phenomena induced by filament in air. (a) Artificial rainfall[166] ; (b) snowfall[39]

下载图片 查看原文

图 32. 光丝产生THz波在大气遥感中的应用[174]

Fig. 32. Application of THz wave generated by filaments in atmospheric remote sensing[174]

下载图片 查看原文

刘伟伟, 薛嘉云, 苏强, 陈瑞良. 超快激光成丝现象研究综述[J]. 中国激光, 2020, 47(5): 0500003. Weiwei Liu, Jiayun Xue, Qiang Su, See Leang Chin. Research Progress on Ultrafast Laser Filamentation[J]. Chinese Journal of Lasers, 2020, 47(5): 0500003.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!